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508 A. HERZENBERG AND F. J. LOWES ON THE

This paper describes an experimental and theoretical investigation of induction in a rotating
conductor surrounded by a rigid conductor of finite or infinite extent. The results are applied to
a discussion of induction in rotating eddies in the fluid core of the earth as a possible origin of the
geomagnetic non-dipole field. ‘

Model experiments were made with rigid rotators in a steady magnetic field; the induced
magnetic field was measured outside the conductors. The results confirmed the appropriate parts
of the theoretical work.

In the theoretical work solutions are first obtained for a rotator embedded in a solid conductor of
infinite extent; a method is then developed for extending this solution to a finite surrounding con-
ductor. Charts are given for the induced field on the surface of the earth due to a hypothetical
rotator in the earth’s core. The analysis is based on integral solutions of the field equations;
wherever possible the field vectors themselves are used rather than a vector potential.

The induced magnetic fields depend on the relative symmetry of the rotator, the surrounding
conductor, and the applied magnetic field. For an applied field parallel to the axis of rotation, the
induced field is proportional to the angular velocity; for an applied field perpendicular to the axis,
the induced field reaches a limit at high angular velocities. If both the surrounding conductor and
the applied magnetic field have rotational symmetry about the axis there is no induced field outside
the surrounding conductor.

The conclusion of the geophysical discussion is that eddies must have radii of several hundred
kilometres if they are to account for the observed magnitude of the non-dipole field. Because of the
skin effect such large radii would not be tenable if the core material were effectively rigid. However,
fluid motions must occur due to the electromagnetic forces, and the consequent magneto-hydro-
dynamic disturbances probably have decay lengths much larger than the rigid conductor skin depth;
therefore arguments based on the rigid conductor skin depth are not applicable. Thus the eddy
model might be satisfactory if the fluid motion does not seriously alter the basic induction
mechanism.

PART A

1. INTRODUCTION

This paper is concerned with the mechanism underlying the secular variation and the non-
dipole part of the earth’s magnetic field. (For a brief description of these fields see § 81 of
this paper. Fuller discussions are given by Chapman & Bartels 1940; Elsasser 1950; Inglis
1955.) It was suggested by Elsasser (194654) and Bullard (1948) that the secular variation
and the non-dipole field might be due to induction caused by the interaction of the earth’s
main magnetic field with eddies in the fluid core of the earth. We shall refer to this suggestion
as the ‘eddy hypothesis’. The eddy hypothesis has been discussed quantitatively by Bullard
(1948) in terms of a model in which an eddy is treated as a rigid conducting sphere rotating
in non-conducting surroundings and in a constant applied magnetic field. In a later paper,
Bullard (1949%) treated induction in a spinning conducting sphere surrounded by and in
electrical contact with a rigid concentric conducting shell. He found the surprising result
that, for steady rotation, the induced magnetic field outside the shell is the same as if the
shell were not there. Both of the models discussed by Bullard contain questionable simplifica-
tions. The first model ignores the spread of current outside an eddy surrounded by con-
ducting material, and the second imposes a degree of symmetry which there is no reason to
suppose exists.

Our aim in the work reported here was to develop the eddy hypothesis beyond the point
at which Bullard has left it. We have investigated how the eddy hypothesis is affected by

(i) the spread of current out of an eddy surrounded by solid conducting material,
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ELECTROMAGNETIC INDUCTION IN ROTATING CONDUCTORS 509

(ii) the degree of geometrical symmetry of the eddy, the conducting core, and the applied
magnetic field, and '

(ii1) the shape of the eddy.

When we started, we did not believe that much progress could be made by a mathematical
investigation. We therefore made an experiment with a rotating conducting cylinder
surrounded by, and in electrical contact with, a stationary conductor of variable shape. The
whole arrangement was placed in a magnetic field which could be oriented in various ways.
The induced magnetic field was measured outside the conductor. This experiment is
described in part B of this paper.

After the experimental work had been started, we found that theoretical progress was
possible after all. We did this theoretical work in two stages. In the first stage, we considered
a rotating conductor surrounded by a rigid conductor of infinite extent; a magnetic field
with its sources outside the rotator was applied with various orientations. An account of this
investigation is given in part C, where we discuss the induced magnetic field from rotators
of different shapes. We believe that our approach here brings out the basic physical features
in a clearer way than was possible with the previous treatments (Bullard 19495 ; MacDonald
1934). In the second stage of the theoretical work, part D, the extent of the conductor
surrounding the rotator is made finite. In particular, we work out the induced magnetic
field which would be observed at the surface of the earth if there were an eddy near the
surface of the earth’s core.

Because of the stage the experiment had reached when the theoretical work was done,
it has not been possible to correlate theory and experiment as closely as would have been
possible had the theory been done first. Nevertheless, it has been possible to discuss the
experimental results in the light of the theory. This is done at the end of part B; the agreement
is satisfactory.

In part C we shall derive from our approach the formulae for the induced field due to
a sphere spinning in a conducting medium of infinite extent, although these formulae are
special cases of results given by Bullard (19494). We feel that the inclusion of these results is

justified, on the one hand because of the simplicity of our derivation, and on the other hand
because we need these formulae in part D, so that their derivation makes the paper
self-contained.

The results of the experimental and theoretical work given in parts B, C and D enable us
to re-discuss the eddy hypothesis, and to answer the three questions posed above. This
discussion is given in part E. The basis of the discussion is now a model in which a rigid eddy
with a sharp boundary is spinning steadily in a rigid conducting core. This model is still
unsatisfactory because it ignores the effect of the motion of the core material under the
influence of the electromagnetic forces.

1-1. Basic formulae

It is convenient to write down the basic formulae at this point. We shall then have the
basis of the discussion of the non-dimensional parameters which enter into the experiment
described in part B, and we shall also be able to derive the physical features which will make

the subdivision of the discussion of the basic induction mechanism in part C appear natural.
62-2
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510 A. HERZENBERG AND F. J. LOWES ON THE

When all quantities are referred to an inertial frame of reference, Maxwell’s equations
become, in the presence of moving conducting matter,

VAH = 4n0(E+vaH), (1-1)
JH

VA E = — W, (]. 2)

V.E = 4nc?q, (1-3)

vV.H=o. | (1-4)

(We use unrationalized e.m.u. A note on units and notation will be found in §1-2.) E, H
are the electric and magnetic fields; ¢ is the electric charge density; v is the local velocity
of the matter and ¢ is its conductivity; ¢ is the velocity of light in vacuo. We have assumed the
dielectric constant and the permeability to be unity, and have neglected the displacement
current, terms of order (v?/c%), and a convection current term 47¢v on the right of (1-1).
We note that by taking the divergence of both sidesin (1-1) and then using (1-3) we obtain,

for constant ¢,
=——=V.(vaH). 15
q 47"/.2V (VA ) ( )
Therefore a charge distribution can be maintained within moving conducting matter.
The induction process in moving conducting matter is best discussed by eliminating
E from (1-1) to (1-4). By taking the curl of (1:1), and using (1-2) and (1-4), we obtain
JH 1
o _ L ye .
o 47ra'V H-+Va (vaH). (1-6)
The non-dimensional form of (16) is discussed in part B.

We next rewrite (1-6) in a form appropriate for a rotational motion. Let us suppose that
we have a fluid of uniform conductivity ¢ filling all space, and let a part of this fluid be in
rotational motion about a straight axis. Let us take cylindrical polar co-ordinates (p, 4, z)
in the inertial frame in which the rotational axis is stationary. Let the unit vectors corre-
sponding to the direction of increasing (p, A, z) at any point be (g, 1, Z) respectively. Let the
angular velocity w be a function of p and z; the velocity v is therefore

v(p,4,2) = w(p, 2) pi. (1-7)

Let us suppose that there is applied a magnetic field H, whose components H,,, Hy,, H,,
contain A only in a factor ei™A, Then, owing to the axial symmetry of the velocity field, the
components of the total magnetic field H will also contain A only in a factor eim?,

If we now substitute for v from (1-7) into (1-6), and use (1-4), then we obtain

oH 1 ., . a
'5‘[-—-— R'V H——lme—I—ZpH.Va). (1‘8)
Thisis the fundamental equation in the theory ofinduction in rotating conductors embedded
in conducting materials. The first term on the right represents a diffusion of the field (if we
pute = 0, we are left with a vector form of the equation of heat conduction). The second and

third terms on the right of (1-8) represent the induction process. Their physical significance
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ELECTROMAGNETIC INDUCTION IN ROTATING CONDUCTORS 511
can be seen by supposing that the diffusion term is negligible. Then we have, in a region of
constant o, (H,, H,, H,) cc eimd-o, (1-9)

i.e. the second term drags the magnetic field round with the matter, provided that m==0. The
third term on the right of (1-8) represents a process of stretching of lines of force so that they
remain attached to the fluid particles; this term operates only in a region of changing
angular velocity. (For example, if w decreases in the direction +8, then a field H having
a positive component H, will develop a negative component H,.)

The form of equation (1-8) shows that the induction phenomena are quite different
according to whether there is axial symmetry (m = 0) or not (m==0). To consider these two
cases, it is convenient to split H into two parts, i.e.

H—H,+h, (1-10)

where H, is the applied magnetic field, and h is the induced magnetic field. (Throughout
this paper we shall suppose that in the region of rotating matter the applied magnetic field

satisfies the equations JH
a—to;o, VAH,=0, V.H =0, (1-11)
i.e. we are supposing that H, is constant and has its sources outside the rotating region.)

If we have axial symmetry, then m = 0 in (1-8), so that the term —imwH drops out.
Moreover, as we shall show in § 3-1, we can replace H by H,, in the term H.Vw because the
lines of force of h are perpendicular to Vw on account of the symmetry. Thus (1-8) becomes

% — 1o Vh = AgH, Vo, (112)
where we have used (1-11). Equation (1-12) is the vector form of the equation of heat
conduction with sources; the sources lie where the angular velocity varies and depend only
on the component of H, along Vw. Clearly, h is proportional to the source strength, and
therefore to Hy and w. In particular, under steady conditions (Jh/d = 0), the magnitude
of h falls off only slowly with the distance from the sources.

This last result is in sharp contrast with what happens under steady conditions when there
is no axial symmetry (m==0). The last term in (1-8) then still acts as the source of h, but these
sources now depend on h as well as H, because there is no longer a symmetry requirement
forcing h to be perpendicular to Vw. Thus h is no longer proportional to H, and w. More-
over, the term —imwH is now non-vanishing, and leads to an exponential fall-off of H with
distance from the sources. This last result can be seen most easily by taking the point of view
of an observer moving with the matter. This observer would see magnetic and electric fields
H* and E* given by vAE

c2

H* — H+

, E*=EvaH, (1-13)

where terms of order (v%/c?) have been neglected. H* and E* would vary harmonically in
time with angular frequency mw, and would therefore penetrate only a distance of the order
dlJm = (2mowm)~* from the sources. The same is true of E and H because of (1-13). In

particular, within a rigid rotator, E and H are confined to a boundary layer of thickness
~(2mowm) .
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512 A. HERZENBERG AND F. J. LOWES ON THE
It is useful to define a non-dimensional parameter
a=2mnowa® = (a/d)?, (1-14)

where a is the radius of the rotating region. In the steady case, the value of a determines the
main features of the electromagnetic field in a rotator; if we have axial symmetry then
hoca; if we do not have axial symmetry then the electromagnetic field extends throughout
the rotator when a<<1, and is confined to a boundary layer near the rotator surface when
a> 1. The theoretical discussion therefore falls naturally into the three parts

m=0, (m+0,a<kl), (m==0,a>1).

But before we develop the theory further (part C) we shall give an account of the experi-
mental work.

1-2. Notation

Throughout the paper electric and magnetic quantities are expressed in unrationalized
electromagnetic units. In formulae, c.g.s. units are always used, but in the text, tables and
graphs other units are occasionally used.

The symbol ~ stands for ‘is approximately equal to’ and ~ for ‘is of the order of
magnitude of’. The magnitude of a vector is denoted by a light face italic symbol, e.g.
|H,| = H,. In integrals variables of integration are always primed.

This list gives notation which is used generally throughout the paper. Other symbols
used in only one section are defined when introduced.

a radius of rotator u half-length of cylindrical rotator

¢ velocity of light , v, v velocity, peripheral velocity

d skin depth = (2mow)~* %, y, z Cartesian co-ordinates

¢, ¢ induced electric field X, §,2 unit vectors in the directions of x, y, z

h, h  induced magnetic field increasing

i (—1)% d4  surface element

J»j  current density E,E total electric field

[ typical dimension of moving H  Hankel function of first kind
conductor H, H total magnetic field

m integer, order of spherical harmonic, Hy,H, applied magnetic field
exponent in eim* J, Bessel function

n integer, degree of spherical M, M magnetic dipole moment
harmonic Pr  Legendre function

n unit normal vector R distance between field point and

q charge density point of integration

7, v radius R, radius of earth’s core = 3500 km

'y unit vector in the direction of r R;  radius of earth = 6400 km
increasing T duration

s integer ~dV  volume element

ds line element 7 = 2mowa?® = 2mova, a non-

¢ time \ dimensional parameter

% a typical aeceleration time y 105G
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LT torque v angular frequency in e

A small thickness p,e  radius in cylindrical polar

€ eddy power consumption co-ordinates

0 polar angle in spherical polar 3 unit vector in the direction of p
co-ordinates increasing

K core power consumption o electrical conductivity

A azimuthal angle co-ordinate T period

X unitazimuthalvectorinthedirection ¢, @

} potential functions

of A increasing v, ¥
U = 4mol%[t,, a non-dimensional W, W angular velocity
parameter
PART B

2. EXPERIMENTAL INVESTIGATIONS

It was decided to investigate the following problems:

(i) There had been some uncertainty about the behaviour of an isolated rotator at high
velocities in a traverse applied magnetic field. We wished to verify Bullard’s (19495) treat-
ment of this problem.

(ii) Ina transverse applied field, an isolated rotating sphere gives an induced field which
approaches a limit at high velocities, the magnitude of the limiting field depending only on
the radius of the sphere and the magnitude of the applied field. Bullard (19495) had shown
thatifa stationary concentric spherical conducting shell were placed around and in electrical
contact with the rotator, then the induced field outside the conductor is unchanged. We
wished to know how the external induced field would be altered if the conductors were not
spherically symmetrical.

(iii) An applied magnetic field parallel to the axis of an isolated rotating sphere gives no
induced field. There is also no external induced field if a spherical shell is placed round
the rotator (Bullard 19496). However, it seemed possible that with an unsymmetrical
surrounding shell there would be an external induced field which might increase without
limit as the velocity was increased. :

Experiments to investigate these problems would involve rotating a conductor in intimate
electrical contact with stationary surrounding conductors of various shapes, the whole being
in a large magnetic field parallel or transverse to the axis of rotation. The small induced
fields would have to be measured outside the conductor, and in the presence of the large
inducing field. This section describes the design, construction and operation of such an
apparatus, and includes a discussion of the experimental errors and limitations. It concludes
with a summary and discussion of the results obtained. This discussion for axial inducing
field depends to a certain extent on the ideas and results of § 7; it is suggested that the reader
return to this discussion after reading § 7.

The experimental work was limited to the steady-state problem. As we shall now show,
scale considerations made it impossible to investigate time varying cases of geomagnetic
relevance with the same apparatus. «
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514 A. HERZENBERG AND F. J. LOWES ON THE

2-1. Non-dimensional parameters

Before giving the details of the experiment we discuss the non-dimensional parameters
which enter into the problem. We assume that the applied field H, is constant, and that
where the conductivity o does not vanish it is constant; the velocity » of the rotator may vary
with time.

As we saw in §1-1, the elimination of E from (1-1) and (1-2) leads to

VZH + 410V a (vAH) — dno 0H /9t = 0. (2:1)

To reduce this equation to non-dimensional form we introduce the quantities
v, = maximum peripheral velocity attained,
[, = a typical length (the rotator radius),
t, = a typical time in which the velocity varies,
hy = the unit of magnetic field.
Multiplying (2-1) by &/h, we can rewrite it

H v H\ [(4n0l3 J\ (H
2v72) (220 AT} — 0 V=) = .
(2v2) ( /lo) + (47005, (1,9) A (UOA ho) ( " ) (to : t) (ho) 0. (2-2)
It follows from (2-2) that for given boundary conditions the solution of (2-1) is characterized
by two non-dimensional parameters which we denote by

o = Hamovyly), (2:3)

u = 4nol}ft,. (2-4)

The parameter o was introduced in § 1, and is a measureof the ratio of the size of the rotator

to the electromagnetic skin depth; the parameter # is essentially the ratio of the natural
decay time of electromagnetic fields in the rotator to the time of acceleration.

The values of the parameters for our laboratory experiment, and estimates for an eddy
in the earth’s core are

Upap. < 10 as 0 = 6-2x107*e.m.u. (copper), )
a = 2-0cm,
1,<1500cms~! (7500 rev/min),
dosay~50  taking o~3x10cmu, (25)
a~ 500km,
Vg~ 0:05cms™1,
Mab. ~ 3 X 1072 taking ¢~ 1s,

Heddy ~ 30 taking £,~ 100 years. /

The values quoted for the experiment are the best that could be obtained with our apparatus.

We see that it is possible to obtain a value of « in the laboratory comparable with that for
a typical core eddy. In fact, as we shall see later, the induced fields from a rotator are,
depending on the symmetry, either proportional to a for all &, or independent of « for a> 1.
Therefore, the laboratory experiment is adequate to reproduce effects which do not depend
on time variations of the velocity. However, it is clearly impossible to reproduce time-
dependent effects with the apparatus as constructed.
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2-2. Design considerations

It would have been desirable to make the parameter a = 27mswa? the same for the
experiment as for a core eddy, in which case the steady-state induction phenomena
would be exactly comparable. However, for a typical eddy « = 50 to 100, and it proved
impossible to obtain large enough experimental velocity and radius to give this value.
The angular velocity was limited by mechanical considerations and power requirements.
The surrounding conductor would have to be of dimensions several times that of the
rotor, and too large a scale for the latter would have led to excessive material requirements,
both for the rotor assembly and the inducing field coils. A short cylindrical rotor,
of 2 cm radius, rotating about a vertical axis, with surrounding conductor of 6 cm radius,
was finally adopted, the cylindrical rather than spherical shape simplifying contact
problems.

The possibility of using mercury as the conductor, with rotating and stationary vanes to
impress a suitable velocity distribution, was considered, but mechanical difficulties and the
high resistivity of mercury led to the use of copper or brass conductors, separated by a
thin uniform layer of mercury. Several outer conductors of different shapes could then be
made interchangeable. It would have been preferable for all the solid conductors to be made
of copper, but to avoid constructional delays it was necessary to use brass for the outer
blocks.

The inducing fields were most conveniently produced by a vertical solenoid for axial
field, and a pair of coils with horizontal axis for transverse field. To avoid spurious results
due to distortion of the magnetic fields, no ferromagnetic materials could be used in the
construction of the rotor assembly; the main problem which arose from this was that of the
high-speed bearings, but it was found that satisfactory ball races could be made from phos-
phor bronze. To spin the rotor the use of air or water turbines, which could be mounted
directly on the shaft, was considered, but for reasons of simplicity of control, speed regula-
tion, power supply and availability it was decided to use a series-wound a.c. motor and
a belt drive. Though such motors are not inherently speed-stable it was found that in
practice the stability was quite good enough.

For inducing fields of 10 to 100G induced fields somewhere in the range of 1 to 1000y
were to be expected near to the conductors (1y = 1073 G). The choice of magnetometer was
thus a primary consideration in the design of the apparatus; it was decided to use one of the
fluxgate type. The detector element of the fluxgate magnetometer is a saturable core trans-
former (the core being a mu-metal wire or strip) ; a sinusoidal voltage of constant amplitude
and frequency is applied to the primary, and the wave form in the secondary winding is
modified by the presence of any external magnetic field. After suitable filtering and
amplification, an output current is obtained which is proportional to the component of
applied field in the direction of the transformer core (see, for example, Brewer, Squires
& Ross, 1951). The sensitivity of this type of magnetometer could be easily varied over
a wide range, and with a movable detector head any component of field at any place could
be measured provided that a sufficiently stable backing off field could be applied, while no
appreciable external field would be introduced by the head. Thus the fluxgate magneto-
meter had many advantages over suspension and rotating coil magnetometers.

63 VoL. 249. A.
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2:3. Description of apparatus

Figure 1 shows a schematic diagram of the rotor assembly as constructed, and figures 2
and 3 are photographs of this and the coil assembly.

The cylindrical copper rotor, 4-00cm diameter, was integral with the shaft, which
rotated in two semi-thrust phosphor-bronze ball races in the brass bearing block. The copper
rotor was enclosed in a hollow brass cylinder of external diameter 12-0cm, the annular
gap being 0-05cm. Apart from the mercury in this annular space the large cylinder was
insulated electrically from the rest of the assembly by the Perspex bushes. This whole
assembly was bolted to a triangular Dural plate which was supported above the Dural base-
plate by three brass pillars.

phosphor bronze aluminium pulley

ball races

brass bearing block

|

copper rotor — | J N Y LR i
1 [ insulating bushes

mercury —— |

,,;,/ solenoid
/ T /

brass cylinder

horizontal field coils
— e——— |
¢ h|
S S 1
0I T T T L] é T T T T l'b T T T T 1'5 cm

Ficure 1. Rotor assembly.

Three interchangeable outer brass cylinders were used (figure 4): one, which will be
called the symmetrical block, was a solid cylinder except for the internal cylindrical cavity;
in the second, the hollow block, this cavity was bored right through, a brass or Perspex plug
being inserted to provide the bottom surface of the cavity ; the third, the asymmetrical block,
was similar to the first except that it had been cut away at the bottom to give a plane surface
at 45° to the axis, leaving a minimum thickness of 0-15 cm between the oblique surface and
the bottom edge of the cavity. '
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The rotor was driven by an endless woven cotton belt from a series-wound reversible  h.p.
a.c. motor 1 m away, the speed being controlled by a variable transformer or a rheostat.
Various pulleys were used on the motor and rotor shafts togive speed ratios of 1:2, 1:1 and
2:1, the speed of the motor pulley being measured by a commercial stroboscope.

Ficure 2. Fluxgate and rotor assembly. Ficure 3. Inducing field coil assembly.

Uy

symmetrical ~ hollow block  asymmetrical
block block

Ficure 4. Outer conductors.

A vertical solenoid centrally placed about the rotor gave an axial inducing field, uniform
to 2 9%, throughout the rotor, of up to 150 G at a power consumption of 250 W. Two coils
strapped to the solenoid gave a transverse horizontal field of up to 20 G at 130 W, this field
being uniform to 4 9, throughout the rotor. This arrangement of coils enabled the transverse
field to be applied in any horizontal direction, and also enabled both axial and transverse
fields to be applied simultaneously if necessary. _

The rotor assembly and motor were fastened to a wooden bench placed away from water
pipes, electric conduits, etc., and the controls for the fluxgate, motor, field coil and strobo-

scope were on a bench several metres away.
63-2
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The fluxgate was one which had been built by Goldsac (unpublished work) ; it had a
sensitivity of about 20y/mA, and the element would operate in fields of 0 to 50y. By applying
negative feedback through a solenoid round the fluxgate element, the sensitivity could be
varied from 20 to 4000y/mA, the feedback also stabilizing the overall sensitivity against
variations of fluxgate sensitivity and amplifier gain. The necessary backing-off fields were
conveniently applied using the same feedback solenoid, as were calibration fields. For most
of the work the fluxgate was used at a sensitivity of about 1000y/mA, and the output meter
was a microammeter shunted to give 1 mA full-scale deflexion and a critically damped
swing of 5s. This damping effectively smoothed out short-period magnetic disturbances.
The meter was read to 1 or 24A (i.e. 1 or 2y) and was calibrated to this accuracy.

controls
motor
motor
stroboscope /
rotor assembly
‘ coil assembly
inducing compensatin — /
field otegtiomefers
P H nullin
(rotor)
H nulling \
(fluxgate)
] compensating solenoid
@-—- fluxgate E%_/
<« fluxgate element
e
|
| 1 \ feedback solenoid
calibration backing off
fields fields

Ficure 5. Block diagram of apparatus.

The fluxgate element was a tight push fit in the feedback solenoid, which was itself a tight
push fit in a compensating solenoid, the whole being clamped wherever it was desired to
measure the field, usually on the base-plate, under the axis of rotation. The compensating
solenoid had two separate windings, one being split at the centre, and enabled the fluxgate
to operate in the large inducing fields. When the vertical solenoid was being used, a current
was passed through the split winding so as to annul, as far as possible, the diverging com-
ponents of the inducing field, while the other winding was used to annul any field component
along the fluxgate, which in this case was nominally perpendicular to the inducing field
axis. Both these windings were fed from potentiometer circuits working from the potential
drop across resistances in the inducing field circuit, so that, once set, the compensation
automatically followed small changes in the inducing field current. With reasonable care in
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centring the fluxgate and coils, the full fluxgate sensitivity of 20y/mA could be obtained
with an axial inducing field of 50 G, and, using similar compensating circuits, with a trans-
“verse inducing field of up to 20 G perpendicular to the fluxgate or 6 G parallel to it. The
fluxgate element was normally alined E-W; when it was N-S the earth’s field over it was
cancelled by an additional current through the compensating solenoid.

Both the vertical solenoid and the horizontal field coils were wound in two sections, so
the earth’s field at the rotor could be annulled independently of producing the inducing
field. Thus the field at the rotor could be exactly reversed merely by reversing the main
inducing coil current. A block diagram of the various control and compensating circuits is
given in figure 5. The stability of all the compensating circuits was such that the time
variation of the field measured by the fluxgate was not appreciably greater when theinducing
field was applied. Care had to be taken, however, to avoid vibration of the coil assembly,
as the accompanying large changes of field at the fluxgate element could cause instability.

2-4. Experimental method

The stroboscope was calibrated from 500 to 3000 rev/min, and could be compared with
the frequency of the mains at 1500 and 3000 rev/min. A spot determination of speed in this
range was accurate to about 4-50rev/min, with corresponding accuracy at the lower and
higher submultiple and multiple speeds. For more accurate measurements the stroboscope
was set at 3000rev/min and the motor speed adjusted to a convenient submultiple or multiple
of this. Thus, by using the several pulley ratios, rotor speeds of 500, 750, 1000, 1500, 2000,
2250, 3000, 3750, 4500, 6000, 7500, 9000 and 12000rev/min were obtained, the repro-
ducibility of speed when switching the motor on and off varying from about 25 to 50 rev/min
through this range.

The experiments were performed in the Physical Laboratories, Manchester University,
where during most of the day there was random magnetic noise of 5 to 20y amplitude and
field changes of up to 100y/h, so frequent reference had to be made to the zero level of the
field. Final measurements were made by working at one speed at a time, alternating ‘at
speed’ and ‘zero speed’ readings at uniform time intervals, 8 to 10 double readings taking
3 to 5 min. This eliminated any zero drift linear with time, and any large non-linear change
was generally noticed and the affected readings rejected and repeated. For each speed
a mean deflexion was obtained with a standard deviation of about 2y, the actual value
varying between 1y for very quiet periods and 5y during very disturbed periods when
measurements would not normally be made.

This method involved rapid switching of the motor, and this was in any case necessary
at high speeds because the heating of the rotor assembly was very considerable. About

200 W was absorbed at 7500 rev/min, mainly in the mercury layer, giving a temperature
rise of 3° Cin the 405 at full speed needed for one complete set of measurements at this speed
for one direction of rotation. Copper, mercury and brass have appreciable temperature
coeflicients of resistivity, (1 to 4) x 1073/° G, so the temperature of the rotor assembly was
noted throughout the measurements and empirical corrections applied to the observed
induced fields to refer them to a standard temperature, these corrections being obtained
from auxiliary experiments in which the assembly was heated externally.
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In the axial field investigations the fluxgate was horizontal and parallel to the plane of
the oblique surface of the asymmetrical block, i.e. parallel to the direction of the induced
field. In the transverse field investigations the inducing field was N-S, so that the earth’s
field could be annulled, and measurements of the induced field were made with the fluxgate
element horizontal, parallel and perpendicular to the inducing field, the magnitude and
direction of the total induced field then being computed. As it was not possible to set the
fluxgate element to better than about 1°, measurements were made for both directions of
rotation, the mean of the two giving the required value. This procedure is justified provided
that the deviation from the desired position is small; for 3° deviation the error involved is
less than 0-2 9.

In some measurements the usable speed range was limited by the breakdown of the
mercury contact at high speeds. This was caused by the mercury moving away from the
bottom of the rotor, the centrifugal force setting up a pressure distribution which reduced the
pressure on the axis and tended to move the mercury outwards and up past the side of the
rotor. The exact pressure distribution was not calculated, but a cavity was bound to form
on the axis at some critical speed when the absolute pressure there became negative.
Cavitation would occur at lower speeds if the mercury was dirty or any air was trapped in it,
because the pressure gradient would draw less dense matter into the cavity. The formation
of a cavity was confirmed by observing the bottom surface of the mercury through the
Perspex plug in the hollow block. If the space between the rotor and block were completely
filled with mercury, cavitation could not occur, but this was not feasible because of the
difficulty of preventing mercury from being forced into the bottom bearing. However, an
optimum quantity of mercury was found which could not escape into the bearings but which
did increase the critical speed to a higher value, and a cleaning technique was evolved which
gave the best possible contact. The rotor could then be spun up to about 5000 rev/min
without cavitation occurring.

2-5. Discussion of errors

Measurements were made with inducing fields of 4 to 150 G such as to give a maximum
induced field at the fluxgate element of about 500y. The inducing field currentof1 to 5 A was
kept constant to £ 0-005A. The rotor speed was constant to + (20 to 50) rev/min at each
speed, equivalent to variations of induced field of about -+ 4y, but being random these will
be included in the standard deviation of 4 (2 to 3) y obtained for the mean of eight to ten
readings at each speed. The error involved in applying the temperature correction was
probably less than 3y in most cases. The fluxgate sensitivity showed variations of about 1 9,
and it was not easily possible to calibrate the fluxgate to better accuracy than this, so the
standard deviation for the induced field at each speed may be put about 5y. In the transverse
inducing field investigations, the measurements for the fluxgate element parallel and per-
pendicular to the inducing field were combined to give the magnitude 4 and direction ¢ of
the total induced field, with standard deviations of about 5y and 2° (at low speed) to 0-5°
(for speeds greater than 1000 rev/min), respectively.

Systematic errors due to change in position of the coil assembly or fluxgate element, and
dimensional changes at the higher temperatures, can be shown to be negligible. There were,
however, two possible sources of systematic error the effect of which could not be reliably
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estimated: in the speed range for which measurements were used the spurious field change
given by the 50 ¢/s field of the motor was less than 5y, but its magnitude and sign varied and
no systematic attempt was made to allow for it; and, though the brass blocks were machined
to close dimensional tolerances, there may have been internal variations in conductivity
due to inhomogeneities in the casting from which they were made.

The experiments were designed primarily to measure the variation of induction with
speed, and the standard deviations quoted above are for relative measurements only;
absolute measurements were subject to much greater uncertainty. The constants of the
field coils could not be calculated to better than 2 or 3 %,. The fluxgate could be calibrated
to 1 %, for uniform fields but the observed field was non-uniform, approximating to that of
a dipole about 12 cm from the centre of the fluxgate element, the mu-metal cores of which
were 12.cm long, and it is estimated that the effective absolute sensitivity was not known to
better than about +109,. \ :

Measurements with the isolated rotor were made successfully up to 12000 rev/min, this
limit being set by the safe working speed of the motor. With the mercury contact, the speed
limit was set by the motor power at about 8000 rev/min. In the experiments using axial
inducing field the maximum useful speed was 4500 rev/min, because of the breakdown of
the contact, but in the transverse field measurements no change in the induced field due to
this could be observed up to 8000 rev/min. This was understandable because in this case the
current flow through the mercury would normally be concentrated at the outer part of the
bottom surface of the rotor, and with the quantity of mercury used there would always be
contact for at least 0-2 cm from the edge. However, measurements at 6000 and 7500 rev/min
were not completely satisfactory, and have not been used, because at the highest motor
powers, spurious field changes of up to 40y were observed. These were due to the motor, and
could not be completely eliminated or allowed for as they were critically dependent on the
experimental conditions.

2-6. Experimental results and discussion

It is convenient to summarize and discuss separately the results for axial and transverse
applied fields. For transverse field the discussion is independent of the rest of this paper.
The discussion for axial inducing field does, however, draw on several results of the theoretical
investigations described later in this paper, particularly in §7.

Axial applied field

Preliminary experiments with the isolated rotor, and with this-in the solid (symmetrical)
block, showed that there was no detectable external induced field in these cases with axial
symmetry. This was to be expected from the symmetry theorem proved in §6:1.

With the rotor in the asymmetrical block, measurements were possible up to 4500rev/min
(@ = 7) and showed no appreciable departure from a linear relation between induced field
and speed of rotation (figure 6). The observed relation was

h=(2:3+0-3) x 10~ Hyo/, (2-6)

where £, the horizontal component, was measured 12 cm under the bottom of the rotor.
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(The copper rotor and brass block were separated by a small but appreciable thickness
of mercury, all three metals having different conductivities. However, in this case almost
all the induced currents flow through all three media, and one has to use an appropriate
intermediate conductivity ¢’, and hence o' = 2mo’wa?. The conductivity of copper is
6:2 X 1074, of mercury 0-1 x 1074, and of the brass used 1-22 x 10~*e.m.u.; ¢’ was taken as
1-50 x 10~*e.m.u. It must be emphasized, however, that the qualitative features of the
induction phenomena, and in particular the effect of the transverse secondary inducing
field, depend on the parameter a = 2nowa?, where ¢ is the rotor conductivity.)

The external induced field in this case may be estimated theoretically in several ways.

5001 | ST

400— / 7

induced field (y)
I w
g S
l I

100— /

103 rev/min

Ficure 6. Induction in an axial inducing field.

Figure 7 shows one section of the experimental conductors superimposed on the theoretical
current distribution in an infinite medium (figure 15). Various estimates of the effect of the
finite boundary on the current distribution were made (e.g. that only those currents which
would be completely inside the conductor would flow, or that the remaining currents were
confined to flow just inside the boundary), allowing for the different boundaries in the
different meridian sections. The resultant external magnetic field was then obtained by
summing the dipole moments of the individual current circuits in each section. This method
predicts fields at the point of observation lying in the range

h=(1to2)x10~*Hya'. (2-7)

An alternative method of taking account of the experimental boundary conditions is to
approximate them by boundaries for which theoretical solutions are given in §7, i.e. an
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infinite plane boundary and a spherical boundary. These are indicated in figure 8. For the
plane case (7-9) gives a field at the magnetometer of magnitude

h~6x10"* Hya'. (2-8)

surrounding brass block rotor

AN
= T T~ N
~
~
~N
- - = - _ N\
- ~a
/ P
4 -7 e — -
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/ /s
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Ficure 7. Limitation of current flow by the boundary of the outer conductor. The current dis-
tribution for a surrounding conductor of infinite extent is superposed on a cross-section of the
asymmetrical block.

L o s e v o —

|
1
1
1

Ficure 8. Approximation of the asymmetrical block by a sphere and by a half-space.

This is most probably an over-estimate, as no account is taken of the limitation of the currents
by the cylindrical surface of the block. For the spherical boundary 7-7 gives
_ h~2x10~4 Hye, (2+9)
taking R~14cm, L~ 3cm. The agreement between the theoretical estimates (2:7), (2-8),
(2-9) and the experimental result (2-6) is surprisingly good considering the crudity of the
approximations made.
The magnetic field at the rotor given by the current reflected at the outside boundary
leads to a second-order external induced field. This can be estimated from the results of

64 ' VoL. 249. A.
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§7-4. Equation (7-26) gives the mean field over the end of the rotator due to the currents
reflected from an infinite plane boundary. This secondary inducing field is transverse to the
axis of rotation, and the secondary induced field due to it may be estimated by approxi-
mating the experimental rotor by a sphere of radius 2 cm. This leads to a secondary induced
field £, at the magnetometer of magnitude

h,~8x107% Hya' M(a), (2-10)

where M(a) is the magnitude function (2M/H,a® = h/h,,,, ) given in figure 9. The direction
of h, will rotate through {= as « increases, but for high velocities it is parallel to the primary
induced field h,. Thus the secondary field increases with h, (which is proportional to H,a")
with the addition of the factor M(a). The effect of this will be to give an upward curvature
to the induced field against speed graph, which will flatten into a straight line of increased
slope as M(«) approaches its limiting value of 1-0 at high speeds. Combining (2-10) with the
experimental result (2-6) we have

hyfhy~3-5 x 10-2 M(a). (2:11)

At o =7 (the maximum value in this experiment) M(«) = 0-5, and (2-11) predicts a
difference between low and high speeds of only about 1 %,, which is too small to be observed.
Any such difference of slope in the experimental results is only 2 or 39%,; the standard
deviation of the experimental points from a single straight line is 3y, and the maximum
deviation 6y.

Transverse applied field

In this case the direction of the induced field varies with velocity, but the induced dipole
moment M is always in the plane normal to the axis of rotation; the induced field may
therefore be specified by 4, its magnitude, and {, the angle between h and —H,,

The full theoretical solutions for an isolated sphere and an infinite cylinder have been
given in a convenient form by Bullard (19494, pp. 419-422). They are, for a sphere

(2M| Hya®) ei¢ = Jg[ (— 2ia)¥]/Jy[ (— 2ix) ], (2-12)
and for an infinite cylinder (M = dipole moment per unit length)
(20 Hya?) &€ — J,[(2ia) ]/ Jy[ (2ie) ], (213)

The experimental values of 4/k,,, and { for the isolated finite cylinder, and the corre-
sponding theoretical curves for a sphere (2M/Hya® and {) and for an infinite cylinder
(2M]H,a? and {) are plotted in figure 9. The value of 4, , the magnitude of the induced
field at infinite speed, was obtained with an accuracy of about 5 9, by extrapolation of a plot
of & against «~* (see (5:34)).

At low speeds the experimental curves lie between the theoretical ones, but at higher
speeds tend very closely to those for a sphere, as would be expected. The actual value of
hmax. agrees with the theoretical one to within the experimental accuracy of absolute
measurements.

In the limit a - oo we have, from (2:12), {— 0. This agrees with the result of Thomson
(1893). However, Gans (1921), quoted by Valentiner (1927), states that in the limit { - 45°.
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That this latter result is incorrect is confirmed by the experiment, in which { decreased to
25° at = 18, in agreement with Bullard’s result.

1 _________ 0‘8
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Ficure 9. Induction in transverse field. Curves 1, theoretical (infinite cylinder);
2, theoretical (sphere); 3, experimental (cylinder).

Ficure 10. Schematic representation of the induced current system of a rotator in
transverse field for < 1.

In this case of transverse inducing field the electric field outside the rotator is approxi-
mately that of a transverse central quadrupole, giving four external current circuits when
the rotator is surrounded by a conducting medium. This is illustrated in figure 10, which

shows schematically the surface-charge distribution and the four external current circuits
64-2


http://rsta.royalsocietypublishing.org/

JA '\

/ y

A

a
{ )\
L 2

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

V. \
AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

526 A. HERZENBERG AND F. J. LOWES ON THE
upper scales, o
0 1 2 3 4 5 7 8
l 1 L 1 I| — ]
e— | Lyisolated cylinder
5001 ] o— - 2, symmetrical block
}:, ' / :?:j—.” 3, hollow block
9 4001 .5:/.3/
(g 300 ./:/./
B o~
g / o (a)
T 200~ A /
o Vd
wo- 8
0
0-10# ' (b)
- :
= 05— —i—i—i—— = e — e —
0 1 | | | 1 | | L
0 T T T I
< .05
= 0-05
o g g e e — @
—0-100 4—t—y—— e L - .

¢ (deg.)

lower scales, 103 rev/min

Ficure 11. Induction in transverse field. Effect of outer conductors.

Ficure 12. Approximation of experimental conductors by concentric spheres.
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superimposed on the internal current circuit for an isolated rotator. The opposing currents
shown inside the ends of the rotator would of course partially cancel, but it is convenient to
visualize the current system as five separate loops. The two loops at the ends have the same
direction as the internal one, while the two side loops have the opposite direction ; the magni-
tudes of all five increase together to their limiting value attained when a—>oo0. The experi-
mental curves for £ when the rotor was in the hollow block with Perspex plug, and in the
symmetrical block, are compared with that for the isolated rotor in figure 114. With the hollow
block only the two side loops would be introduced, thus reducing the external induced field,
while with the symmetrical block one end loop, which would increase the field, would be
present as well. An indication of the separate contributions of these loops was obtained by
subtracting the appropriate measurements. In figure 116 are plotted //k; and k/k;, where
kg and hy are the fields given by this method for the contribution of one side loop and one
end loop, and 4, is the field given by the isolated cylinder, all normalized to the same distance
from the magnetometer; in figure 11¢ the values of {g and {; are compared with the experi-
mental curve for {;. The errors are large, because we are now dealing with the small
differences of large fields, but the field ratios appear to remain constant at about
—8:89%, for the side loop and +5-0 %, for the end loop. No great reliance can be placed
on the values obtained, because this method of estimation ignores any distortion of the
current distribution inside the rotor, but they should be of the right order of magnitude.
When allowance is made for the difference in conductivity between the brass blocks and the
copper rotor, for uniform conductivity and the particular boundary conditions of the
experiment the fields of the external circuits would be 20 to 40 %, of that given by the
isolated cylinder. The exact solution has been given by Bullard (19495, pp. 422-423,
n=m = 1) for the similar case of a spherical rotator of radius & in a concentric spherical
conductor of radius 4 (a and 4 are interchanged in Bullard’s notation). Figure 12 compares
the experimental case with the spherical one for & = 3a. For this theoretical case an estimate
can be made of the induced field due to one of the external current circuits; this gives a value
of 50 9, of the field due to the internal current circuit, in good agreement with the experi-
mental value considering the approximation made.

From this solution of Bullard’s we see that, for an isolated rotator, the plane of the
external electric quadrupole field rotates through only im, while the plane of the internal
current circuit rotates through 47, as a is varied from 0 to co. However, in an infinite con-
ducting medium the plane of the external currents follows that of the internal currents as
this rotates through %, and this is very nearly the case for any conductor with 5> 2a.
Figure 11¢ shows that in the experiment (s and {; appear to decrease more slowly than ¢,
but it is doubtful if the difference is significant, and it is not more than could be due to the
particular geometry of the experimental conditions.

PART C. BASIC THEORY OF INDUCTION IN ROTATING CONDUCTORS
The following sections 3, 4 and 5 give an account of the theory of induction in rotators
embedded in conductors of infinite extent. The results of these three sections are then
extended in part D to rotators in finite conducting shells.
The results of §§ 3 to 5 overlap to a considerable extent those of Bullard’s (19490) treatment
of induction in a rotating sphere. Bullard used generating functions from which E and H
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can be derived; these generating functions can be expanded in series of terms each of which
contains two factors: a radial function, which has to satisfy an ordinary differential equation
with boundary conditions, and a spherical harmonic. The results are confined to bodies
bounded by concentric spheres or coaxial cylinders. Our approach differs from Bullard’s
in that we start from integral solutions of the field equations, and work with the field vectors
themselves rather than with generating functions. This procedure has two merits. First,
some of the salient properties of the solutions are contained in the Green’s functions of the
integral solutions; as a consequence, the physical properties of the solutions come out of the
theory in a clearer way than with Bullard’s methods. Secondly, the work with the field
vectors instead of the generating functions releases us from the constraint of having to start
out from a co-ordinate system of spherical or cylindrical symmetry. The price we have to
pay for these advantages is that when the applied field H, does not have axial symmetry
we can give the solutions only for the extreme cases of low and high angular velocity, whereas
Bullard gave them for the complete range.

We saw in §1-1 that the equations satisfied by the magnetic field have quite different
characters according to whether the fields are axially symmetric or not. We shall deal with
the case of axial symmetry in § 3, and with the case of no axial symmetry in §§ 4 and 5. As we
have already mentioned in § 1-1 the case of transverse (i.e. without axial symmetry)
inducing field may be subdivided into the cases of low angular velocity, when ¢<1 (§4)
(« = (radius/skin depth)? is the parameter 2mowa?), and of high angular velocity, when

a>1 (§5).

3. AXIAL SYMMETRY (m=0)

We consider a material of uniform conductivity ¢ filling all space. Part of the material is
in rotational motion about an axis, and the remainder is stationary. The applied magnetic
field H, is assumed to be uniform, parallel to the axis of rotation, and time-independent.
(Actually some of the results are valid for a non-uniform but axially symmetric H;.) As
examples we take a semi-infinite cylinder, a finite cylinder and a sphere. We calculate the
induced magnetic field, the accompanying current system and the electromagnetic couples.
Finally, we discuss the case of a time-dependent angular velocity.

We use spherical polar co-ordinates (7,6,4) and cylindrical polar co-ordinates (p, z, 1)
with the § = 0 and z axes coinciding with the axis of rotation.

3-1. Field equations
We saw in § 1-1 that the magnetic field H(= H+h) has to satisfy the equations

H 1, .
-ﬁt——-z;r;v H+VA (VA H), (3 1)

V.H =0, ' (3-2)
where v is the local velocity of the matter.
When a magnetic field satisfying (3-1) and the boundary conditions has been found, the

corresponding electric field can be computed from (1-1). (The complete solution obtained
may violate the conservation of charge because the displacement current is being neglected.)
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In the case of an H, with axial symmetry, the treatment of equation (3-1) is much
simplified by the fact that the induced magnetic field h must everywhere be parallel to A.
For the time-independent case, the proof of this statement is as follows: E, vanishes because

f E .ds’ taken around any circle centred on the axis and lying in a plane perpendicular to

the axis is zero ( f E.ds'=— f d4'f’. 0H/dt = O) . Moreover, the vector va H hasno A com-

ponent. Thus the current density ¢(E + v H) has no A component, and has axial symmetry
because of the symmetry of the whole problem. After a little consideration, one can see
from the Biot—-Savart law that such a current system gives rise to a magnetic field pointing
everywhere along A.

If there is time-dependence the argument given in the preceding paragraph breaks down

because f E.ds’ + 0. If onenevertheless assumes the result to be true, then, as we shall see in

§3:5, one can find a solution of (3-1) which behaves in the prescribed way at infinity.
Therefore if one assumes the uniqueness of the solution of the field equations corresponding
to specified (axially symmetric) distributions of velocity and applied magnetic field, then it
follows that the assumption of an induced field parallel to A must be correct.

Thus with axial symmetry vah = 0, and we may replace the term Va (vaH) in (3-1)
by Va (va Hy). The applied field H, satisfies

0Hy/ot =0, V?H,=0, V.H,=0. (3-3)
Therefore from (3-1) and (3:2) we see that the induced magnetic field h must satisfy
oh 1 o,
% 4MV h+Va (vaH,), (3-4)
V.h=0o. (3:5)

Equation (3:5) is satisfied by a field h(r, 8, 1) = k,(r, 6) X, where £, is independent of A.
Until we come to §3:5 we shall confine ourselves to the time-independent case. If we
write v(r,0,1) = rsinf w(r, 0) A, equation (3-4) becomes

V2h = —4mgVa (VA Hy) = —d4norsin 6(H, .Vo) A. (3-6)
The solution of (3-6) is

T "sin§'[H, .V’a)(r 0] g
|r—1']

h(r) =0 j d (37)

all space

where variables of integration are denoted by a prime. For a rigid rotator, » changes only
at the surface; equation (3-7) then reduces to

, 7' sin@’H A a
) = —ow f dd IR ’sinfH, 8’5, (3-8)
rotator
surface

where fi is the unit vector pointing outwards normally to the rotator surface.


http://rsta.royalsocietypublishing.org/

j A Y

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

' \

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

530 A. HERZENBERG AND F. J. LOWES ON THE

'3-2. Cylinder
Semi-infinite cylinder
We now apply (3:6) and (3:8) to a semi-infinite cylinder of radius a, rotating with
constant angular velocity », and embedded in rigid conducting surroundings of infinite
extent. The origin of co-ordinates is taken at the centre of the end disk (see figure 13).

Ficure 18. Co-ordinate system. End of cylinder.

The product H, .fi is equal to + A, on the end disk of the cylinder, and is zero everywhere
else. Equation (3-8) therefore simplifies to
' r N .
h(r) = —owH, f ad (3-9)
end disk ‘

According to (3-6) we have V?h = 0 everywhere except on the end disk; from (3-9) h is
continuous there, while the derivative dh/dn along the outward normal has a discontinuity
dh dh A

(%) A (77—7;) = +4mowr HyA, (3-10)
where the subscripts (4, —) denote that the derivative is taken just outside or just inside
the cylinder. )

Now the vector function
sgn (cos ) Zmow H,r2P}(cos f) & (3-11)

(where sgn (cos) = 41 when cosf Z 0) satisfies Laplace’s equation everywhere except on
the plane = §n (the end disk) ; the function (3-11) vanishes there and its normal derivative
has the same discontinuity as h. Therefore the vector function

h —sgn (cos §) gmow H,r?P}(cos ) X (3-12)

satisfies Laplace’s equation everywhere in r<a; for r<a it is therefore possible to expand
h in the series

: ’ ~ 0 2s+1 ~
h = sgn (cos 8) 2mowHyr?Pl(cos ) A+ 3 b, (2) P} . (cos@)A. (3-13)

s=0
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(That h is parallel to & is a consequence of (3-9). The occurrence of P with only the value
m = 1 follows from A = — % sin 1+ § cos . Because both h and the term containing sgn (cos §)
are even in cos §, we must have n = 2s+1in P} (cos§) in (3-13).)

For r>a, we have V2h = 0 everywhere. Hence we can write, for r>a,

@ a 2s5+2 A
h=3Sa (;) PL., (cosf) 4. (3-14)
s=0 )

The coeflicients a,, b, can be determined from the behaviour of the integral solution (3-9)
near the axis. Denoting by a prime the co-ordinates of the points of integration (which here
lie in the end disk of the cylinder), we have

|r—r'"|? = [r?—2r"sinf cos (A—A") +7r'?], (3-15)

so that near § = 0 equation (3-9) gives

A [27 e, .7 cos(A—=2") '’ ,
h= *U'(UH())\ f,\/=0d/1 fr’=07' dr W [1+ ';2";—1‘—,-2 COS (/1—/1 ) 0—|—- 0(32)]

= —gwHAn0[1+ 0(0)] r[(a®+72) +12(a2+12) -1 —2r], (3-16)

if we note that the contribution from the component of &’ (at the point of integration)
perpendicular to & (at the field point) vanishes on integration. By expanding (3:16) in
ascending and descending powers of (r/a), putting

P}, (cos8) = (s+1) (25+1) 6[1+0(62)]
in (8-13) and (3-14), and equating coefficients of equal powers of (r/a), one finds
for r<a,

h = 2noua By [ sgn (cos) (2)2P§(cos 04 (2) Pt (cost)

+3 22(32;1_)1()215(:3)1!)! (%)ZMP%M(COS ‘9)]; (3-17)

s=1

for r>a,

_ A @ (__l)s (25‘)' a 2s5+2 .
b= —omod A 3 oo (-r-) Pl (cos0) (3-18)

27 4 az\ . a*
= —2mnowa Holl:(ss—ﬁ) sin @+ O(‘?‘)] .

This case of a single-ended cylinder is of particular interest as being most amenable to
experimental investigation ; the solution has therefore been studied in more detail. By using
the terms with s<38 of the expansions (3:17) and (8-18), numerical computations have been
made with an accuracy of about 19,. Figure 14 gives an axial section of the surfaces of
constant / in units of 10~20wa?H,.

The current density is given by j = (1/47) Va h. We define a current function I by

1(r,6,2) = f "drjy(r', 8, 1) sin 6. (3:19)
0

65 VoLr. 249. A.
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The surfaces of constant I are parallel to the direction of current flow, and the current
flowing between the surfaces I and I+ 47 in a sector of angle 0 is 810A. We have

rsinf

sin d
i -hy(r,0,A). (3-20)

I(r,0,2) = fo 7 dr' (Vah), (', 0,1) = —

‘The function / has also been computed, and an axial section of the surfaces of constant /,
expressed in units of 10~3¢wa®H,, is given in figure 15.
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Frcure 14. Contours of induced magnetic field. One end of a cylinder. Uniform axial inducing
field. Surrounding conductor of infinite extent. The figures give the strength of #, in units of

10—2H, cwa?.

yA \
V. \
AL A

NP
O H
e
= O
= O
= w

Ficure 15. Lines of current flow. One end of a cylinder. Uniform axial inducing field. Surrounding
conductor of infinite extent. The figures give the values of the current function I in units of
10-3Hyowa?,
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Finite cylinder

For this case an approximate solution can be obtained by combining the leading terms
in the appropriate expansions (3-17) and (3-18) for the two ends. If we take the origin at
the midpoint of the axis of a cylinder of radius a, length 2u, we obtain, for large r,

o[ (3ua?\ . at a%ud :
=— 2770’(4)(12H07\[(F) sinfcosf+ O (—r;f) +0 (—;g—)] . (3-21)

In order to obtain numerical results it is more convenient, and also more accurate for
small 7, to make a graphical transformation of the semi-infinite cylinder solution from the
spherical polar co-ordinate form to a cylindrical polar one; a simple axial displacement
followed by addition then gives the solution for the finite cylinder. Figure 16 shows the
current distribution for a cylinder of length 2a.

Ficure 16. Lines of current flow; finite cylinder. Uniform axial inducing field. Surrounding
conductor of infinite extent. The axial length is equal to the diameter. The figures give the
values of the current function 7 in units of 10-3H,cwa®.

3:3. Sphere

We consider a rigid conducting sphere of radius « rotating at constant angular velocity
o in a rigid conducting medium of infinite extent. The origin of co-ordinates is at the centre
of the sphere (see figure 17).

Equation (3-8) reduces to

h=-—ar(oaHoj dA's——————mB CO,SQA'
4 |r—r1'|

— —owddH,A f dg’ dX’ sin? @'cos 8’ cos (A—2')
4
X E ;f*:‘l [P,,(cos 0") P,(cosf)+2 f P (cos0') P (cos ) cos s(/l——/l')]
n=0 s=1

asinfcosl

= —4mowa’ HyA 3 (8-22)

65-2
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outside the sphere. Equation (3-22) is a special case of a result obtained by Bullard (9490,
p. 424).

A
Ficure 17. Co-ordinate system; sphere.

3-4. Electromagnetic couples

In this case of axial symmetry the electromagnetic couple I on a rotator in a conducting
medium of infinite extent can be calculated as follows. We have, taking the origin of r on
the axis of rotation and integrating over the volume of the rotator,

, I
r— deVrA(JAH) - 4ﬁdeVrA[(VAH)AH]

=_1—f dA'(raH A . H—Lra i H?), (3-23)
47 4

where the intregal is now taken over the rotator surface (see, for example, Stratton 1941,
chap. n1). In our case of axial symmetry, the second term vanishes on integration. Since
fi. H can be replaced by fi. Hy, the ra Hj part of the first term also vanishes on integration.
Thus (3:23) can be written in the form

1 , A
r :Z;LdA rahf’ H, (3-24)

We shall estimate I' for a thin cylinder in a uniform field H,, parallel to the axis; (3-24)
then breaks up into separate contributions from the two end disks. If we use the fact that

h = k,(p, z) X, we have ‘ .
T~2.3H,3% f Y dr' Iy (o', 0), (3-25)
0

where £, is the induced field calculated in § 3-2 for a semi-infinite cylinder. (We make the
approximation of neglecting at each end disk the induced field given by the other end disk.)
If we insert for %, the term of lowest order in (r/a) from the series (3-17), we obtain

T~H32 f 0 v dr’r’(—ocHo %) — —laH2d%, (3-26)

where a = 2mowa?. For the opposite extreme of a spherical rotator Bullard (19495, p. 431)
obtained T' = — (4/75) aH§a%2. Thus T' is roughly independent of the length of a cylinder.
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3:5. Time-dependent angular velocity
When the angular velocity of the rotator is time-dependent, equation (3:6) ceases to be
valid and we have to work with the full equation (3-4):
Vzh—47nr%lz1 = —4moVa (VA H,). (3-27)
Stnusoidal angular velocity .
A solution of equation (3-27) has been given by Bullard (19495) for a sphere rotating with

sinusoidally varying angular velocity. We shall treat this problem by another method. When
Vv is proportional to e, the solution of (3-27) is

h(r,) =+o | dV’eXp[;(l_l—liI).(Qfor)élr_r’”V’A[V(r',t)AHO]. (3-28)

rotator

(The solution corresponding to the real part of v is the real part of (3-28), (3-29) and (3-30).)

As in the time-independent case, for a rigid rotator, equation (3-28) reduces to a surface

integral. If the angular velocity is w, e, we have ’

(141) (27rav)*|r r ]]
B

h(r,?) = —ow, f sl

rotator
surface

If2mova®> 1, where a is the radius of the rotator, then the exponential in (3-29) is negligible
except in a relatively thin surface layer of thickness ~d = (2mov)~% on both sides of the
rotator surface; the induced field is confined to this surface layer. Only surface points
within a distance not larger than about (2mov)~? from a given field point contribute to the
induced field at that field point. For a field point whose perpendicular distance from the
rotator surface is p( <a), we can evaluate (3-29) by taking the factor (oH,.fi}) outside the
integral and assigning to this factor its value at the foot of the perpendicular from the field
point to the rotator surface; the remaining surface integral converges so rapidly that the
curved surface can be replaced by an infinite plane; we then easily obtain

exp [+(1—i) 2rov)tp]

o- AR e, (3-29)

h(r,t) ~ —ow,pH, .01\ . 27 (1+1) (2mov)} (3:30)
The maximum induced field therefore occurs on the surface and is
. Vi 3 A
() e = | (%) prHO.n’ . (3-31)
4 max.,

On the other hand, if 2mova? <1 then we have d>a. The exponential in (3:29) can be
replaced by 1 when r is within a distance of ~d from all points of the rotator surface.
‘Therefore when 270va?< 1 the pattern of h is the time-independent pattern in and near the
rotator, and follows the angular velocity adiabatically.

Short pulse

The general solution of equation (3-27) is

|r r |27TO'
. exp[ ]
h(r,?) = o} f o f AV'VA[V(r', ¢) AH,] t)% . (332)

all space
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As it stands, equation (3-32) is useful for obtaining the effect of a short pulse of rotation
which occurs during the time (f,—3AT)<t<(f,+3AT). If (¢—1))> AT, then (3-32)
becomes '

h(r,t):(t—_(_r—to)%AT’ f dV'exp[JrT‘;_?_-—%;"’—” VA[V(r)aHy(r")], (3-33)

all space

where V(r) is the time average of v(r, #) over the duration of the pulse.

Step function
- The solution for a step function angular velocity (w = 0 for <0, @ = constant for £>0)
can be obtained either by integrating with respect to time in (3-32) and using the formula

cronl E2 L 2l a9

or directly from (3-27) by the use of well-known operator methods (see, for example,
Jeffreys & Jeffreys 1950). We obtain

B(r,1) = o [aV" {1—erf [ﬁ(’"’/t)i’]}w (vaH), (3-35)

where we have put [r—r’ |=R.
Since for small and large » respectively we have

J¥- T
——erf(x)_l._ﬁ( 3 +Iﬁ_"') for x<1,
exp (——xz)( ) ) .
= xdnm x2 +a 4x4 ...] asymptotically for x> 1, (3:36)

it follows from (3-35) (putting x = (R2ns/t)?) that

hr)=c [ avy vA(vAH)exﬁ((éf:/’;‘)’f) (1= g +)s  (330)

rotator

when ¢ < R?me for all points of the rotator, and

b)) =0 [ a7} VA(VAHO)I:I .‘(RZ”") fﬂ;(th’"’) S RNCED

rotator

when ¢> R?me for all points of the rotator. By (8:37), h will be exponentially small at any
point until ¢~ R?*rg. The second term in (3-38) vanishes since de'VA (vaH,) =0 (by

partial integration); the induced field therefore has the asymptotic value of the time-
independent case when t> R?no for all points of the rotator. The deviation from the
asymptotic value decreases as ¢~%.

Finite pulse

The induced field due to an angular velocity w = 0 for t<0 and ¢> T, w = w, (constant)
for 0<¢< T can be found by superimposing two solutions (3-35). During the time 0 <¢<T
the induced field is given by (38-35). For ¢> T, we have

hr)=c [ drgle (Rz’"’) —erf(Ri””')*]vA(wHO). (3-39)

rotator
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The functions

2
1—erf [(R Zm)!] for all >0,
2 3
and ft, T,R)=1 _erf[(R t’"’) ] for 0<t<T

Eerf[(gr%)é]——erf[(]ezzm)%] for t> T (3-40)

are shown in figures 18 and 19. Curves are given for f(¢, T, R) corresponding to a number
of values of R?zo.

0-6
S 1004
3
1T 04f
[ o
[SS— »
= 0-02
o
|
- 0-2F
- L Bl
b 0
1 1 1 i L 1 1 1 1
0 2 4 6 8 10
t/R*mo-

Ficure 18. Propagation of a step-function disturbance.

Fort> T, R?no> T, we have

St T,R)

(R?no )T ( Rno ) . (3-41)

S =i TP\ T

This approximation could be obtained directly from (3-32) if we treated. the disturbance
as a short pulse; it is in fact just another way of writing (3-33). The approximation (3-41)
is shown in figure 19 for R2no = T, t > T. ’

The maximum value of f(¢, T, R) at a fixed point occurs at time

t=T  if RmosiT, (3-42)
t~§Rmo if Renoz3T. (3:43)

At the shorter distances the observed disturbance lasts for a time ~ T'; at the larger distances
the interval between the instants at which f{#, T, R) has half its maximum value is 1-8R?n0.
Thus at the larger distances the time scale of the observed disturbance depends on the
distance from the original disturbance rather than on the duration of the source pulse.

Figure 19 shows that it is not possible to estimate 7 from the observed disturbance if
Repo > T.
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i R?no|T

S, T, R)

iT
Ficure 19. Propagation of a square-pulse disturbance of period 7.
2o\ &
f(t,T,R)=1-—erf[(R;m)] for 0<t<T,

e[ (7) -

2o\ ¥
if [(R ) ] for t>T.
The approximation is

76 B0 s (r=7) (=277

and is drawn for ¢> T, R0 = T.

1-0

T llllllll

T

maximum observable disturbance
S

i
S
=

=]
ra
£

(noT)R

Ficure 20. Attenuation of square pulse and sinusoidal disturbances. The curves drawn are

, 2ra\ ¥ 2o\ ¥
(1) square-pulse disturbance, duration- 7": :erf [(Z@j_’%) ]—— erf [(R mf) ]} s
- max.

¢

\ ,
(2) sinusoidal disturbance, period 27": exp (—- 27 R ;U) .
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The actual maximum value at a fixed point is

250\ &

[f(t, T, R) Jipax, > 1 — (;L;R;«m) if RmosiT, (3-44)
T .

~0-23 yrr if Rmo23T. (3-45)

Equation (3-45) shows that for large R the maximum varies as 1/R2. This is in contrast to
a maintained sinusoidal disturbance, for which the attenuation with distance is exponential.
In figure 20 the attentuation of a square pulse of duration 7" is compared with that of a
sinusoidal disturbance of period 27. The difference can be understood if we note that the

__J ) Fourier transform of a pulse of length 7 is proportional to sin (v77/2)/(vT/2), and therefore
< - does not change in order of magnitude fromv =0 tov~2/T.
E - The effect of a finite acceleration time may be considered by building up the angular

= velocity in a series of steps. If the acceleration takes place in a time 7", the remarks followin
A y P P g
= equation (3:43) show that the details of the acceleration cannot be observed at distance
T O g

R such that R*ne> T".

=w ~

4. TRANSVERSE MAGNETIC FIELD AT LOW ANGULAR VELOCITY (m#O, a<L 1)

We now turn to the more complicated case of fields without axial symmetry. The extra
complication arises because the induced magnetic field h now interacts with v to give
induced currents, in contrast to the axially symmetric case where vah = 0. However, if
the velocities are sufficiently small, then the secondary induction effects are also small, and
it is possible to obtain a solution expressed a a power series in the angular velocity. The first
term in this solution is just what would have been obtained by neglecting the induction due
to the induced field, that is, by replacing the term (va H) in the field equations by (va Hy).

We start with the time-independent case, and obtain a criterion for the convergence of
the power-series solution. We then relate this criterion to the skin depth observed by an
observer moving with the rotator (see §1-1). The solutions for a finite cylinder are then
worked out in first approximation. The method which we use to treat the convergence is
also used to prove a condition under which a dynamo process in a conductor of infinite
extent is impossible. The section closes with some remarks on the time-dependent case.

OF

4-1. Time-independent case: solution in powers of

2 We consider a finite steadily rotating region of axial symmetry (but of otherwise arbitrary

S i shape and angular velocity distribution) within a conductor of the same uniform con-

M ductivity ¢ and of infinite extent. There is applied a steady magnetic field H, which has no
)

QO component with axial symmetry about the axis of rotation.

E 8 Equation (1-6) reduces to gy 4 dmoVa (vaH) = 0. (4-1)

This equation can be replaced by the following integral equation, whose solutions auto-
matically satisfy the boundary condition H—H) at infinity:

OF

H(r) = H0+ade'|_r-_%,-|. VA (vaH)

—H,—0 f av'v’ (|r—_1r_|) A (vAH) (4-2)

66 _ Vor. 249. A.
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by partial integration. The field H given by (4-2) satisfies V. H = 0 because

v. de' popr VA (A H) = de'v'(_Lr,l).v'A(wH)
de'v' [' A2 VAH)]

by partial integration.
To emphasize the fact that v ccw, we introduce a new vector U defined by

v =oU. (4-3)
We now attempt a solution H= § (ow)" HM, , (4-4)
n=0

If we substitute (4-4) in (4-2) and equate equal powers of (¢w), then we obtain the recurrence
relation

A vwid 1
He+D — dev (lr——r—’l) A [UA H®]. (4-5)
The convergence of (4-4) can now be demonstrated. From (4-5) we have
) '
| Ho+ | <del V,(_l) (UnH®) <de/|£_”__H__I\ U |,y | H® |maxj ar
r—r’| |2 |r—r’|
and hence IH(”“)Ima IU | max. | H® |, (fudli '2) : (4-6)

The integration is to be carried out over the moving region, and the point r so chosen as to
make f dV’/|r—r’|? a maximum. The integral is 4ma for a sphere of radius a (origin at the

centre) and 272 for an infinite cylinder of radius a (origin on the axis). Hence we may put

(/ |rd1: ;2) = 4a,

where 4 <6m and «a is a typical radius of the moving region, measured perpendicular to the
axis. It now follows from repeated application of (4-6) that for a rigid rotator of radius a (for

which | U|~a) (00)" | HO | . < (670%)" (0)" | Hy |prans (47)

so that the series (4-4) converges uniformly when
6ma’ow = 3a<l. (4-8)

Ifwe sum (4+5) from zn = 0 ton = oo, and add H, to both sides of the result, then the uniform
convergence of the series (4-4) permits us to exchange order of summation and integration,
so that the series (4-4) is indeed a solution of (4-2).

The argument leading to this convergence condition shows that the first approximation,
in which one puts va Hj for vaH in (4-2), is valid provided ¢<1. In fact, for <1, the
magnetic field permeates the whole rotator (§1-1) and the induced field is very small
compared with H,.
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We may note that a rough argument to deduce the features of the induced field will usually
follow the method of successive approximations, i.e. it will use (4-4) with a small number of
terms, and will therefore give a valid result only if (4-8) is satisfied. Equation (4-2) is valid
also in the symmetric case discussed in § 3, but there the series (4-4) breaks off after the
second term. The distinctive feature of the asymmetric case is that the induced magnetic
field gives rise to a Lorentz force in all orders of (sw).

4-2. Examples

We now apply (4:2) to calculate in first approximation the induced magnetic field given
by spherical and finite cylindrical rotators.

Sphere

We consider a rigid sphere of radius a and conductivity ¢ rotating at constant angular
velocity w in a rigid conductor of the same conductivity and of infinite extent. A uniform
magnetic field Hy is applied perpendicularly to the axis of rotation. We use spherical polar
co-ordinates (r,0,4) with the origin at the centre of the sphere, and denote the axis of
rotation (¢ = 0) by Z. The applied field H, points in the direction (f = }m,1 = 0).

Equation (4-2) can be rewritten in the form

h~oVa f S AL
=

rotator

(4:9)

to first approximation. Putting v = wZAr in (‘4-9), we have

h=owH,247 | gy 7 sind cost’
|r—r'|

rotator
:i%aHothv(sm—ﬁrﬁ@l). (4:10)
The integration is carried out by substituting an expansion for (1/|r—r’|) as in (3:22).
The electric field e associated with h outside the rotator is given by (1+1) and (4-10) as

(4-11)

e — o H,Y (cos 7 s1§13 f cos /1)

This is the field of an electric quadrupole in the plane A = 0.
Equations (4:10) and (4-11) are special cases of results given by Bullard (1949 ).

Finite cylinder
We now replace the sphere of the previous problem by a rigid cylinder of radius a and
length 2u. Equation (4-9) gives

h = 1aH, a2V (sin 6 cos A) +o (1) o (412)

72 rd
the origin being taken on the axis half~way between the ends.

- At large distances h is proportional to the volume of the rotator and to the parameter
« for both sphere and cylinder. In both cases h bears a crude resemblance to the field of
66-2
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a dipole pointing perpendicularly to the applied field, although in this approximation,
h is everywhere perpendicular to the axis of rotation. It is proved in §5-5 that the result
h.w = 0is in fact exact for any rotator in a conducting region of infinite extent.

4-3. Dynamo processes

Another interesting result follows from (4-2). For a stationary magnetic field vanishing
at infinity, we have

| H(r) !<0‘de'lVI | IL<U|V|max | H |, (flrdV; ,2) ) (4-13)
and hence [H | pax. < l:(rjvlmax (f!rdz’ 12) ]]H]max (4-14)

Therefore we can only have H + 0 if the quantity in square brackets is greater than unity.
It follows that it is impossible to find a set of motions in a conducting medium of infinite
extent which will steadily maintain a magnetic field by a dynamo process if

dv’
et ), <

or ‘ 470 | V |pax LS 1, (4-15)
where / is a typical linear dimension of the moving region. The integral is to be taken over
the region in motion, and the point r chosen so as to make f dV’/|r—r’ |? a maximum. The

expression for which the inequality is obtained is of the same order of magnitude as the
parameter o« for the moving region. For the earth’s core we have a~ 50.

4-4. Time-dependent angular velocity

The full time-dependent equation (1-6) can also be solved in first approximation. If we
put vaH for vaAH in (1-6), this equation again becomes analogous to the inhomogeneous
heat-conduction equation; integral solutions can be written down as in § 3-5. The theory
of §3-5 can be taken over almost word for word, except that the source density (va H,) of
the induced field is now distributed over the region of umform as well as of variable angular
velocity (see (1 8))

In general it is to be expected that if the angular velocity varies sufficiently slowly, then
the induced magnetic field will follow the variations of angular velocity adiabatically as in
the time-independent condition, no matter what the symmetry or the magnitude of the
angular velocity. (We have already had an instance of this behaviour in the axially sym-
metric case discussed in § 3-5.) In § 9 we shall need to understand under just what conditions
the time-independent solution can be used as a valid approximation when the angular
velocity is variable. In a conducting medium of infinite extent one can replace equation (1-6)

by the integral equation
x ( |r—r’ |27m)
P i~
(t—t)t ’

H(r,t):HoJra%f' dr f AV V' a[v(r, ) A H(r', t')]

all space

(4:16)
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as one can verify by differentiation. Ifconditions are steady, then the integration over ¢ gives
Jat exp O)ft—e)t = ot jx—x |,

giving the time-independent integral equation (4-2). For a particular pair of points (r,r’),
909, of the value of the ¢’ integral comes from (¢—t') <400¢|r —r’ |2. Therefore, provided
that conditions are substantially steady during a characteristic time 7, the ¢ integral and
the factor exp ( )/(¢—¢)* can be replaced by ¢~ | r—r’ |~ for all pairs of points (r,r’) for
which T\

—) = lj(—) X (skin depth corresponding to period 7T°).

, 1
}r—r |<-2—6(0'

It follows that the integral equation (4-16) can be replaced by the time-independent
integral equation (4-2) for any point r in the rotating region provided that the dimensions
of the rotator are appreciably smaller than the skin depth corresponding to the charac-
teristic time 7'; since the induction process is dominated by the form of the integral equation
for H in the rotating region, the condition that the field should follow the variations of
angular velocity adiabatically in the neighbourhood of the rotator is that the dimensions
of the rotator should be smaller than a skin depth. The argument can easily be extended to
show that the time-independent solutions will also describe the field satisfactorily out to
a distance of the order of the skin depth away from the rotator.

These conclusions are in no way affected by the symmetry or the magnitude of the
velocity.

5. TRANSVERSE FIELD AT HIGH ANGULAR VELOCITY (m==0, a>1)

We now discuss the case of an axially asymmetric H, at high angular velocity. This case
differs from those of §§ 3 and 4 in that the induced magnetic field h now gives important
induction effects. Throughout this section (except in § 5-5) we shall use (E,H) and (E’, H)
to denote the fields outside and inside the rotator respectively.

We shall restrict the discussion to the time-independent case except in § 5-7, where we
discuss the behaviour of h when the rotator starts up. Our treatment is based on the fact
thatif the angular velocity is sufficiently large, E’ and H' are confined to a boundary layer of
thickness ~d ccw~* on the inside of the surface of the rotating conductor. A simple expression
can then be given for H' at any point in this boundary layer in terms of H at adjacent points
of the boundary. We shall use this expression to eliminate (E’,H’) from the boundary
conditions at the rotator surface. The boundary conditions obtained from the elimination
contain only the external fields (E, H) and are useful in the limit as @ —> oo. :

In this section we treat not only the rotator embedded in a conductor of infinite extent
but also the isolated rotator. These two cases require separate treatment because current
can flow across the boundary in the first but not in the second, a difference which leads to
different behaviours of E and H at the boundary. ‘

Except where otherwise stated, we shall use either cylindrical polar co-ordinates (p, z, )
or spherical polar co-ordinates (r, 6, A). The axis of rotation will contain the origin, and will
coincide with the z or # = 0 axis. We shall discuss fields in which each component in either
of the polar co-ordinate systems contains A in a factor ¢i”* only.
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The field equations are VAH = 4n0(E+vaH), (5:1)
VAE =0, (5-2)
V.E = 4mqc?, (5-3)
V.H=o. (54)

Equations (5-1) to (5-4) are valid both inside and outside the rotator, with the provisos that
v = 0 outside the rotator, and that ¢ = 0 outside the isolated rotator.

5-1. The boundary layer

If we eliminate (E, E’) from (5-1) and (5-2), and remember that the field components are
proportional to e”A then the equations for (H, H") become

V:H =0, V2H'—(2im/d*) H' =0, (5+5)

and V.(H,H) =0, (5-6)
where d is the skin depth for m = 1, that is,

d=(2mow) % (5:7)

The solution of (5-5) for H' is

H’(r)=zl1—7 f dAI{CXp[~(leL;)_Il§—Ir’I\/m/dlafgé}")

rotator
surface

yon 8 exp[—(14D)|r—r' | Jmid]) .
——H (r)an, lr_rrl }7 (5 8)
where d/dn signifies differentiation along the outward normal. It follows from (5-8) that H’
is appreciable only within a boundary layer of thickness (d/,/m). This boundary layer is thin
compared to the radius a of the rotator if

ma?/d? = m2nowa® = ma>1, (5-9)

where « is the non-dimensional parameter 27owa?.
Since E’ is related to H' by equation (5-1), E’ is also confined to this boundary layer.

5:2. Solution near the boundary

We next obtain an approximate solution of (5:5) valid inside the rotator. This solution
contains only the boundary values of H and not of dH’/dn. Take Cartesian co-ordinates
(#,9,z) with the origin in the rotator surface, and with the positive z direction pointing
along the outward normal. Let / be the characteristic length in which H' varies along the
rotator surface. (The characteristic length of variation in the X direction is of order (p/m),
and we shall see from examples in §5-6 that the characteristic length along a meridian
(A = constant) on the rotator surface is determined by the rotator shape and by the sym-
metry of H at infinity in such a way as to remain finite and non-zero as w—.) Since
(0?H' |0x24-0*H' |dy?) is O(1/{?) H', equation (5-5) may be written

PH'  2im a? ;L . )
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The solution of (5:10) is

H'(0,0,z) = H'(0,0,0) exp=+z(1+l) “/m[1+0( 12)]} (5:11)

(We have chosen the plus sign in the argument of the exponential so as to make H' decrease
inwards.) From (5-11) we deduce that at the surface (where z = 0 and 9/dz = 9/dn) we have

‘a;:’z (1+3Jm[1+0(%)]H,; (512)

This result will be needed in the next two subsections.

5-3. Boundary conditions for the isolated rotator as w—> o

For the isolated rotator we shall need boundary conditions for the magnetic field only.
It follows from (5-1) and (5-4) that H-—H (5-13)

on the rotator boundary.

Another boundary condition can be obtained from (5-4). Let us introduce an orthogonal
curvilinear co-ordinate system (u,, u,, #3) such that , is constant on the rotator surface, u,
on surfaces normal to the vector fia A where they intersect the rotator surfaces, and u, on
planes of constant A. Then (5-4) becomes, in the usual notation (see, for example, Stratton
1041, p. 49),

lzlzlz[a (/zle)—i—a (hhH2)+a (/Z}le):I—O (5°14)
and a similar equation holds for H'. At the rotator surface equation (5-14) is valid for both
H and H'; by equating the left-hand sides, we obtain, on using (5-13),

1 0H, | 10H, 10H, 10H; 10H; 10H;
hidu, R, Thdu, b o Ty du, T duy
0H, 0H, 0H, OH,

Now (5-13) tells us that il e el

(5-15)

(5°16)

since the partial differentiations d/du,, d/du; are carried out along curves lying in the rotator
surface. It therefore follows from (5-15) that

0H, 0H,
371" ~ on (517)
(note that d/dn = d/h,0u, and H, = H,, H| = H,).

With the aid of the normal component of (5:12) we can eliminate the internal field H’
from the boundary conditions (5-13) and (5-17). We obtain

o, _(1thJmy [1+0(5 12)] (518)

Since H (outside the rotator) is irrotational we can write
H=-VvY, (5-19)
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where W' is a scalar potential function. Inserting (5-19) into (5-18), we have
b g ?¥
n (1 —|—1 ) Jm [1+0 (mlz) oz 0. (5-20)

According to (5-4) and (5:19) we have V2¥ = 0, so that 92¥W/dn? = O(1/I2) ¥ near the
rotator surface, and, neglecting the higher order terms, (5:20) can be rewritten

g d
g O(ZJ)‘}”zo. (5-21)
Therefore, provided / remains finite as @ — o0, we have lim d¥/dn = 0, so that in the limit

W—>0
the rotator behaves as a perfect diamagnetic. This asymptotic condition is approached only
slowly as w increases, since d ocw™3.

5-4. Boundary conditions as w—> oo for the rotator embedded in conducting material

When the rotator is embedded in conducting material, the boundary conditions (5-13)
and (5-18) continue to be valid. The difference between the isolated and embedded rotators
is that outside the embedded rotator we have

VAH = 470E (5-22)
in place of VAH = 0 for the isolated rotator. Due to the link (5-22) between E and H, the
boundary condition ANE — AAE’ (5-23)

implies an additional condition on H and H'. The equality E, = E), which does not
contain v, gives us (VA H), = (Va H'),. If we introduce orthogonal curvilinear co-ordinates
as in the previous § 5-3 we obtain for the #; component

1170 J 1 170 , F ) ‘
i L Ve H) — () | = T [a‘uj (s H) = (hH) |. (5-24)
Putting H, = H;, H, = H{ and dH,/du, = dH{/du,, we have
10H, 19H,
by duy Ry Ouy’
| 0H, 0H] |
. = (5-25)

where (H,, H)) are the components of (H, H') in the tangential direction {i; = A fi. If we
insert (5-25) and the condition H, = H, in (5-12), then we obtain
IH, _ (1+i) Jm 2] .
U)o (2)] (5:26)
The boundary conditions (5-18) and (5-26) affect only those components of H which lie
in planes of constant 1. Nevertheless, these two boundary conditions are all we need since
the divergence equation (5+4) expresses H, in terms of the components H, and H,.
Since docw™, (5:18) and (5-26) imply the two asymptotic boundary conditions

H,—-0

H->O} as w->oo, (5-27)
t
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in contrast to the case of the isolated rotator where we had only the single condition H,—> 0.
The physical reason for the difference lies in the patterns of the induced currents produced
in the rotator by the induction term va H'; these currents tend to annul the components of
H' and therefore H perpendicular to v. In the isolated rotator, currents in the surface layer
can flow only parallel to the surface, and so can annul only H,; in the embedded rotator
currents can flow through the surface and can therefore annul both H, and H,.

5:5. A theorem about h

We now prove the following theorem: The induced field due to a steadily rotating region
of axial symmetry but otherwise arbitrary shape and velocity distribution in uniformly
conducting surroundings of infinite extent, and in a time-independent uniform applied
field H,, of any direction, is everywhere perpendicular to the axis of rotation.

In this subsection we do not make any distinction between the fields inside and outside
the rotator; the theorem is valid in both regions.

Let the axis of rotation be the z axis. From (1-6) and (1-9) we obtain, in the time-

independent case,

Vzh{z—47mw%{% =0, i (5-28)

as the z component of Va (vaH) is —wdH,/dA. If we multiply (5-28) by H,, and integrate
over all space, we have

- [arEveE) —an [avo, 2y B2k < o
or dV'v'. (HV Hz)—de (v Hz)z—szdV 57 (0H2) =o. (5-29)

The first integral in (5-29) vanishes. (It can be transformed into a surface integral at
infinity; this surface integral vanishes because VH = O(r~3) for a semi-infinite cylinder, and
VH = O(r~*) for finite rotators.) The third integral in (5-29) vanishes since (wH?) is single-
valued (integrate first with respect to 1). Hence (5-29) reduces to

f dV'(V'H,)? = 0. (5-30)

Therefore VH, is zero everywhere, and since H, = H, at infinity it follows that H, = H,,
everywhere. But H, = Hy,+h,, and therefore &, = 0 everywhere.

5-6. Examples -
Isolated sphere
We now calculate the induced field outside an isolated rigid conducting sphere of radius
a rotating at large constant angular velocity w. A uniform magnetic field H, is applied
perpendicular to the axis of rotation (f = 0) in the direction (§ = 7, A = 0).
If we put H = — VY outside the sphere we have

V¥ =0, ¥Y—-—Hyrsinfcosd as r—oo, (5-31)
and from (5-21) %’ +30 (z:”/l—%) ‘F] —o, (5-32)

67 , Vor. 249. A.
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where [ is a characteristic distance of variation of ¥ along the surface of the sphere. In the
limit as w — o0, we can neglect the second term in (5-32) provided that [¥(r = a)/l?w?] -0
as w—>oo. If we make this approximation, we find from (5-31) and (5-32) that

H. a8 sinfcos A

lim Y = — Hyrsinf cos A—{ Hya3 ——5—. (5-33)
W—>0 r
From (5-33) we see that /~a, which is consistent with lim [¥(r = a)/l%0*] = 0.

W—>0
From (5-33), and including an error term from (5-32), we have
sinf cos A

h — 1H,aV (T) O ). (5-34)

The sphere therefore behaves as a magnetic dipole of moment —}H,a® as w— 0.

Sphere embedded in conductor

We next calculate the external induced magnetic field when the sphere of the previous
example is surrounded by rigid conducting matter of infinite extent.

The asymptotic boundary conditions (5-27) show that on the rotator surface we have
lim (H,, H,) = 0. We know already from the theorem of § 5-5 that H, = 0 everywhere, and
wW—>0

are therefore led to consider H,. If we write out the equation VZH = 0 in cylindrical polar
co-ordinates, take the p component, and substitute for H, from the divergence equation,

we obtain V2(pH,) +20H,|0z = 0,
or Vi(pH,) = 0, (5-35)
since H, = 0. We have to solve (5-35), subject to the boundary conditions
pH,— Hyrsinfcosd as r— oo, (5-36)
and (0H,),-, = 0. (5-37)
The last equation follows from the boundary conditions (5:27), and is valid provided that
lim (—d—) 0/, _,
o WM On
(5-38)
1. ( d ) 0H,
oo M) O
The solution of (5:35), (5:36) and (5-37) is _
pH, = H,rsin cos A — H,a®sin § cos A/r?, (5-39)
so that H, = H,cosA— H,a®cos A/r. (5-40)
The dlvergence equatlon in cyhndrlcal polar co-ordinates is
14 0H, 10H, _
oap PE) G+ o =0

so that since H, = 0, we have from (5-39)
H, = H,a3sinA(1—3sin%0)/r3. (5:41)
Equations (5-40) and (5-41) are consistent with (5-38).
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We can write (5-40) and (5-41) in the alternative form

H—H,th, h=He2av (" i:"“) LOWd). (5-42)

By comparison of (4-10) and (5-42) we see that the induced fields at low velocity and at
high velocity differ by a factor 2«/15 and a rotation through 90°.

Prolate spherovd embedded in conductor

If the sphere of the last problem is replaced by a prolate spheroid rotating about the
symmetry axis, one can solve (5-35) and the asymptotic boundary condition (pH,)ysface = 0
in spheroidal co-ordinates. H, can then be found from the divergence equation. The result
one finds is, when expressed in spherical polar co-ordinates,

smﬁsmxl) r> oo, (5-43)

h~2H,a%ZAV ( >
where 2u is the length and ¢ the maximum radius (in a plane perpendicular to Z) of the

spheroid. From (5-42) and (5-43) we see that h is roughly proportional to the volume of the
rotator, regardless of the shape. '

5-7. Time-dependent angular velocity: a particular problem

We shall not attempt a thoroughgoing analysis of induction in a rotator with a variable
angular velocity which reaches high values of «. We shall merely try to get a partial answer
to the question: How does the magnetic field behave when the rotation starts? It was
suggested to us by Mr T. Gold that the steady state which we have been discussing so far
might in fact never be reached, or might be reached only after a complicated interim period
during which the lines of force are wound up by the rotator; this is a process which might
lead to a very large induced magnetic field. (We already know from § 4-4 that if the angular
velocity varies sufficiently slowly, then the induced field follows the angular velocity
adiabatically; we are here concerned with rapid accelerations.)

To see whether, and under what conditions, this winding up process in fact occurs, we
consider the following situation. An infinite rigid cylinder of radius a is embedded in con-
ducting matter and lies in a uniform magnetic field H,, applied perpendicular to the axis.
The cylinder starts to rotate at time ¢ = 0 with constant angular velocity w,. Outside the
cylinder there is a boundary layer of thickness A in which the angular velocity decreases
linearly to zero, i.e. we have

w(p) = v, - for p<a,
w(p) =w0[1-—%—‘{| for a<p<a+A,
and w(p) =0 for p>a-+A,

where p is the distance from the axis of the cylinder. It is convenient to take Cartesian
co-ordinates (x, y) in a plane perpendicular to the axis of the cylinder, and with the origin at
the centre of the cylinder, as shown in figure 21.

, 67-2
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To start with, we ignore the diffusion term (VZH/47n¢) in equation (1-6); the remaining
terms then show that the lines of force are dragged round with the conducting matter so that
two particles which lie on the same line of force at any one time always remain on that line
(Dungey 1950). We shall later return to an estimate of the diffusion term. Figure 21 shows
the lines of force schematically after the cylinder has completed one and N revolutions. The
lines of force in the boundary region have length ~A at time ¢ = 0, and are stretched out to
a length 27aN after N revolutions. Since the field strength at any point is proportional to
the distance between two fluid particles placed infinitesimally close together on a field line
passing through that point (Dungey 1950), the maximum value of the magnetic field in the
boundary layer after N revolutions is

H.. =~ (Q”ZN) H,= (%) H, (5-44)
Y
L*’” N pairs{ =
. R .
” A - i
Y = Vpeirs
(@) ()

Ficure 21. Lines of force in the velocity transition layer. (a) After one rotation.
(6) After N rotations.

(v, 1s the peripherical velocity of the cylinder). Therefore it is possible to produce in the
velocity transition layer induced magnetic fields much larger than the applied magnetic

field H,, provided that ot

% >1. (5-45)

We now estimate when the diffusion term becomes important. We have, in the neighbour-
hood of a point on the circumference of the cylinder and on the y-axis,

2n(N+%

A T

[Va (VAH)],~0,

1
[VA(VA H)]y~vOH02,

1 H, 2naN[2n(N+3)7?
dmo (VH),~ dmoc A A ] ’
L (vl ~ o [ 2N DT

4no dno
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(In these estimates we have used the fact that the field lines make an angle A/27réN with the
tangents of circles centred on the origin.) Diffusion is negligible if

1 2
‘177—0—. (V H)x,y

This condition is fulfilled for both the x and y components if

(&) g <1 | (5+46)

4moav,

VA (vaED],, |>

We see from (5-45) and (5-46) that it is possible to choose the parameters in such a way as
to have large amplification of the field while the diffusion process remains negligible. Of
course, after a sufficiently long time, (5-46) must be violated. (We note that for a rotator
with a sharp boundary (A = 0), condition (5-46) is violated so that the peculiar behaviour
associated with the boundary layer does not occur.)

Unfortunately, it was not possible to investigate this winding up process experimentally
because the necessary values of the non-dimensional parameters could not be obtained. If
we express v, and ¢ in terms of the non-dimensional parameters « and g introduced in (2-3)
and (2-4), and the other parameters occurring in these equations, then if we put ¢, for ¢ the
conditions (5-45) and (5-46) become

Y (léo) <2< [,u(%):]z - (5:47)

To satisfy this condition, it is clearly necessary that #(AJl)>1, and a>1. Since the
boundary-layer thickness is smaller than the radius a(= [;), it is therefore necessary that
4>1. As we saw in (2-5), this condition could not be achieved in the experiment; (2+5) also
shows that (5-47) might be satisfied in the earth’s core.

PART D. INDUCTION IN ROTATORS EMBEDDED IN FINITE CONDUCTING SHELLS

In part C we saw that when a rotating conductor is surrounded by conducting matter,
currents emerge from the rotator and contribute to the induced magnetic field. These
currents are due to an electric field whose sources lie in a charge distribution of density
—(1/4mc?) V. (va H) in the rotator and on its surface. These charges are maintained by the
Lorentz forces in the rotator. The boundary of a finite conducting shell restricts the flow of
the currents; there is built up a surface-charge distribution on the boundary whose electric
field reflects the currents emerging from the rotator. We now calculate the contribution
of these reflected currents to the induced magnetic field.

The basic approximation in this treatment is the neglect of the interaction of the magnetic
field of the reflected current with the motion of the rotator. We give two methods which are
complementary. The first, which is applicable only to plane boundaries, is based on the
Biot-Savartintegral. The second method, applicable to both plane and spherical boundaries,
is based on the use of generating functions from which the fields can be derived. These
methods lead to the simple relations (6:6) and (6:25) by which the induced magnetic field
outside the conductor can be readily calculated from the induced magnetic field for a con-
ductor of infinite extent. These calculations, for some specific cases, are given in §7. The
first method enables us to estimate the error in the approximation; this is done in § 7-4.
The second method is easily extended to the time-dependent case.
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6. GENERAL ANALYSIS

In this section we develop the basis of the method. In §6-1 a symmetry theorem is proved.
The time-independent case is dealt with in §§ 6-2, 63 and 6-4; the tlme-dependent problem
is then discussed in §§ 6-5 and 6-6.

6-1. A symmetry theorem

If the shell boundary and the applied field both have axial symmetry about the axis of
rotation, then we can show that there is no induced field outside the shell. This result does
not depend on the approximation used in the rest of this section.

It is true for a finite shell as well as for an infinite one that the induced currents must flow
in planes which pass through the axis of rotation. Because of this, and of the axial sym-
metry, we have h = £, A, where %, is constant along any circle C centred on the axis and lying

in a plane perpendicular to it. Now outside the conducting shell we have f h.ds =0, and

therefore h = 0.
This result was obtained by Bullard (19494) for the particular case of a sphere rotating
in a spherical shell.

6:2. Plane boundary, first method

We consider a conductor rotating at constant angular velocity in a uniform constant
applied magnetic field H;, and in rigid conducting material of the same conductivity filling
the half-space z< 0. The space z>0 is assumed to be insulating. We define a value z,(<0)
such thatall of the rotatorisin z<z,. WeuseV,, and V, to denote all space and the conducting
domain respectively. Functions in the insulating region are distinguished by a prime. The
induced magnetic field will be denoted by h, and the accompanying current density and
electric field by j and e respectively; the corresponding quantities for a conducting shell
filling all space will be denoted by h., j, and e,. We shall call the reflected current,
magnetic field and electric field j,, h, and e,, so that inside the conducting matter

i=jo+i, h=h,+h, e=e,+te,. (6:1)
The Biot-Savart integral gives
-1
he = [ iy L
( ) v, J( )A |1‘—1‘ |

1 1

=| dVje(r)AV —— de', r V’————,——f dVjo,(x AV —— . (62
Ve () + " |r—r'| Veo=V,) (') |r—r'| (6:2)

The first term on the r1ght in (6-2) is h,(r). The second term can be transformed into an
integral over the boundary of the conductor,

’e ’ 1 . ’ ’ jr —_ ’ ﬁ/Ajr
jVodV AV ~j dV[l SRS v,\l——._r_r,l]_ fAdAlr_r,[,

because our basic approximation implies that Va j, = 0. (If we did not neglect the induction
effects of j,, we should have VAj, = Va[o(e,+Vvah,)] = cVa (vah,) in the rotator. The
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third term in (6-2) can similarly be transformed into a surface integral because j., = e, in
(Vo—V,), and Va e, = 0. We can therefore rewrite (6-2) in the form

ﬁIA . I,/ ] r/
h(r) = h,(r) ef dar WA L (r) +3,(r)] (63)
. conductor Ir_r I
surface

where i’ is the unit vector pointing outwards normally to the conductor surface. This

expression is valid, to our approximation, both outside and inside the conductor.
Equation (6-3) is true for a conducting shell of arbitrary shape. If, however, we take
the conductor surface to be the plane z = 0, then fi’ = Z = constant in the surface integral

in (6-3), so that we obtain 2.h(r) = 2.h, (). (64)

The component of the induced magnetic field normal to the boundary is therefore un-
affected by the introduction of the boundary. :
Equation (6-4) is sufficient to define the induced field outside the conductor. If we put

(in z>0) he— V¥, (6:5)
then

Y(x,y,2z) = W(x,y, )+ fz dz’ m‘;—’j—’%—) = W(x,y, ) —~fz dz'z.h,(x,y,2),
from (6-4). Provided that h = O(R™") as R— o, where n>1 and where R is the distance
from the rotator, the potential ¥(x, y, z) becomes constant over the (x, ) plane when z— oo.
We can therefore put W(x,y, ©) = 0, so that

W(x,y,z) = — J w dz'2.h, (x,9,2). (6-6)

The result (6-6) does not contain the position of the boundary in any way. The induced
field outside the conductor is therefore independent of the exact position of the conductor
boundary between the rotator and the point of observation, as long as the normal to the
boundary is fixed. (It has to be emphasized that this result is valid only in the time-
independent case and in our approximation.)

From (6-3) we can obtain a starting point for an estimate of the error involved in our
approximation. The values of the integral in (6-3) are symmetrical about the plane z = 0;
therefore if r; is the image of r in this plane, we have

h(r) —h,(r) = h(r;) —h,(r)). (6:7)

Equation (6-7) enables us to calculate the reflected magnetic field h, (= h—h,) inside the
conductor when we have calculated h at the corresponding points outside by means of (6+6).
This h, can now be regarded as an additional applied field, and the consequent induced
fields can in turn be calculated, so that we obtain a measure of the error in the first approxi-
mation. This procedure is carried out in § 7-4.

6-3. Plane boundary, second method

We now treat the problem of § 6:2 by a second method capable of being extended to
a spherical boundary.
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In the conductor (z<0), but outside the rotator, the field equations are
VAH = 470E, (6-8)
VAE =0, (69)
V.E =0, (6°10)
V.H=o0. (6-11)

In the insulator (z>0) equation (6-8) is replaced by
VaH=0. (6-12)

In this second method we again start with the fields E = e, and H = H,+h,, for a rotator
embedded in a conductor of infinite extent. In the space z<<0 we add to them a ‘reflected’
field, a solution of the field equations (6-8) to (6-11) in which the fields tend to zero as
R o0 ; in the space z> 0 we replace (e, h,) by a ‘transmitted’ field, a solution of the free-
space equations (6-9) to (6:12) in which also the fields vanish as R— . The boundary
conditions at infinity are therefore satisfied, and the boundary conditions at z = 0 then
define the ‘reflected’ and ‘transmitted’ fields uniquely in terms of h,,. Since the fields we
add inside the conductor satisfy (6-8), which does not contain the (va H) term, we are again
neglecting the interaction of the ‘reflected’ field with the rotator.

In this and the following subsections we first discuss the general solutions of the field
equations, and then find the particular solutions which give us the ‘transmitted’ field.

General form of solutions™

Let us consider the possible types of solution of the field equations (6-8) to (6-12).
A general solution of (6-9) and (6-10) is E = +V(dy/dz), where ¢ is a scalar function which
satisfies V2§ = 0, and is otherwise arbitrary. (The use of dy/dz instead of just ¢, and the
similar definitions in (6:14) to (6-16), are convenient to bring out the analogy to the time-
dependent case. The use of dy/dz is sufficiently general because functions independent
of z do not occur in our problems.) Equations (6-8) and (6-11) are then satisfied by
H = 470V} A 2. This combination of E and H will be called a type 1 solution. The general
solution of (6-8) and (6-11) is then obtained by adding to H a field V(d$/dz), where ¢ is
a scalar function which satisfies V¢ = 0, and is otherwise arbitrary. This addition to H does
not affect E. This second solution will be called a type 2 solution. We have then

H, = 4n0VyrZ

E, = Z—Z (type 1 solution for ¢4 0); (6:13)
V& =0
_y%
H, = v
E,=0 (type 2 solution for ¢=0). (6:14)
V2 =0

In type 1 solutions H lies in planes of constant z.

* Literature references for the solutions used here and in §§ 64 to 6-6 are given in §6-6.
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The solutions of the free-space equations (6-9) to (6:12) can be obtained by an analogous
argument. We distinguish these solutions and their generating functions by a prime. The
solutions are

H =0 |
, Yy’ .
Ei=V a7 [ (type 1 solution for ¢ = 0) ; (6-15)
V' =0 |
H, =V~ 0¢
E,=0 | (type 2 solution for ¢ = 0). (6-16)
Vig'=0

In this time-independent case type 2 solutions are of the same form inside and outside
the conductor.

Boundary conditions at the surface of the shell
These are H = H', Eafi = E’'afi and E.fi = 0 on the plane z = 0 (where fi = 2).
Using V2(¢, ¢, ¢") = 0, we find that the boundary conditions are satisfied if

oy
] at z=0 (6:17)
, 0p _ of’ o
p=9' 9z 0z

Particular solution

For the rotator embedded in a conductor of infinite extent the solution (e, h,,) in z>z,
can be expressed as a superposition of type 1 fields (6-13) and type 2 fields (6-14). If the
conductor in z>> 0 is now removed we obtain, in our approximation, a new solution of the
field equations and boundary conditions as follows. The type 2 part of (e, h,,) is valid as it
stands in both z< 0 and z> 0, and it also satisfies the boundary conditions; it is unaltered by
the insertion of the boundary. The type 1 part of (e,, h,,) is still a valid solution in z< 0, but
it does not satisfy the boundary condition § = 0 at z = 0; it is not a valid solution in z> 0.
A reflected type 1 field has to be added in z< 0 to satisfy = 0 at z = 0, and an external
type 1 field has to be put in z> 0 to satisfy dy/dz = 9y’ [z at z = 0. Both these additional
ﬁelds must vanish as R— oo. ‘

" The normal component of the electric field of the type 1 part of the solution has a dis-
continuity at z = 0; this is due to a surface-charge distribution whose field reflects the
current system of the rotator. The type 2 part has no electric field.

The type 1 fields do not give any magnetic components outside the conductor; the only
magnetic field there is that of the type 2 part of h,,. The z component of h,, comes only from
the type 2 part, and as we have seen this is unaffected by the insertion of the boundary.
Therefore we have Z . h(r) = 2 .h,(r) asin (6-4). In practice it is not necessary to resolve
(e, h,,) in terms of generating functlons equation (6-4) is sufficient to define the induced
field out51de the conductor.

68 ‘ VoL. 249. A.
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6-4. Spheﬁcal boundary

 We next consider a conductor rotating at constant angular velocity in a uniform constant
applied magnetic field H,, and in a rigid conducting spherical shell of the same conductivity
as the rotator. We do nof assume the rotator to be at the centre of the shell. We take spherical
polar co-ordinates (7,0, 1) with the origin at the centre of the shell. The radius of the shell
is 75, and the rotator lies entirely in 7 <7,, where r, <7,. The field equations are (6-8) to (6-11)
in the conductor (r<r,) but outside the rotator, and (6-9) to (6-12) in the insulator (r>r).

General form of solution

An argument analogous to that which led to the general solutions (6-13) to (6:16) shows
that the solution of the field equations can be classified into two types as before.
In the conductor

E =V [(% (rgﬁ):l (type 1 solution for ¢==0); (6-18)
Vi =0
)
H, = V[ (9]
E, =0 (type 2 solution for ¢==0). (6-19)
Vi =0

In type 1 solutions H is always perpendicular to r.
In the insulator

H =0
E{ = V[(%'(rg#’)- +  (type 1 solution for ¢ = 0); (6-20)
V' =0
’ a ’ ]
H; = V|5 ()
E,—0 + (type 2 solution for ¢ = 0). (6-21)
V2§ =0

(The use of these expressions for E;, H,, E;, H; excludes fields of the form V(1/r). Such
fields do not occur in our problems.)

Boundary conditions at the surface of the shell
These are H = H', Eaf = E’'Af, E.T = 0, and are satisfied if we put

ad a, .,
y=0, 5() =3 ()
dg g’

p=4¢ ar  or

at r =r,. (6-22)
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Particular solution

An approximate solution for the finite shell can be obtained from h_, and e,, in a manner
analogous to that of § 6:3. The removal of the conductor in r>r, leaves the type 2 part of
(h,,e,) unchanged; a type 1 field regular at r = 0 has to be added in r<r, to satisfy the
boundary condition ¥ = 0, and a further type 1 field which vanishes as r— oo has to be
put in r>r, to satisfy d(r)/dr = d(ryy")/dr. Outside the shell, the type 1 part of (h,e)

gives an electric field only, while the type 2 part gives a magnetic field only.
- Wesee from (6-18) and (6-19) that in r>r, the radial component of h,, is contained in the
type 2 part, and therefore remains unaltered when the conductor in r>7, is removed; that

1s, in our approximation . ~ .
’ PP ’ h.f=h,.t (in7r>r). (6-23)

If we put, in r>r,, h=-vVY¥, (6-24)

as in (6-5), we obtain analogously to (6-6)
Wmanz—fﬂwﬁhgna@. (6-25)

The absence of , from (6:25) shows that if the relative positions of the rotator, shell centre
and point of observation (r, 0, 1) are fixed, then the induced field outside the shell is inde-
pendent of 7, (as long as r, <7,<r). Formula (6-25) forms the basis of our detailed calcula-
tions of field patterns in § 7.

6:5. Time-dependent case, plane boundary

The methods of §§6-3 and 6-4 can be extended to the time-dependent case. We now
consider again the problem of § 6-3 but this time for a rotator with time-dependent angular
velocity. As before all the rotator is in z<z, (<0), and ¢ = 0 for z>0.

The field equations in the conductor (z<<0) but outside the rotator are now

VaH = 470E, (6-26)
' JH \

VA E = — W’ (6'27)

V.E=0, (6-28)

V.H =0 (6-29)

In the insulator (z>>0) equation (6-26) is replaced by
VaH = 0. (6:30)

General form of solution

Without loss of generality, we may restrict the discussion to fields containing the time in
a factor e only. The appropriate solutions of (6-26) to (6:30) are of two basic types,
68-2
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analogous to the time-independent solutions (6:13) to (6:16) of (6:8) to (6:12). In the
conductor we have

H, = 4noVyr 2

E, = V%ﬁ T idmovy 4 (type 1 solution for ¢==0); (6-31)

V2 +idnovy =0, oc e

T
H2 == Va—z +l4:7f0'V¢z

E, — ivVgn2 (type 2 solution for ¢=0). (6-32)
2 ’
V2 4-idmovg = 0, Poc e
In the insulator
H =0
/ oy’ .
El=v— (type 1 solution for ¢ = 0); (6-33)
1 9z yp
Vzgﬁ" =0, Y'oce ™
0
H2 — “a_z‘
E, — ivVg'n% (type 2 solution for ¢ = 0). (6-34)
b

V2 =0, ¢ et

‘The magnetic field of type 1 solutions and the electric field of type 2 solutions lie in planes
of constant z.

The functions (¥,4) and (¢¥',¢’) can be expressed as linear superpositions of functions
of the form (9,9) = exp[i(Es-+1) & (€2-+ 2 —idmov)i ] €71, (635)
(Vs ¢) = exp[i(Ex+ny) £ (849t z] e, (6-36)

where ¢ and 7 are arbitrary real parameters.

Boundary conditions at the surface of the shell
These are Eafi = E'afi, E.fi = 0 and H = H' at z = 0 and are satisfied by

ap
V=0, 0z 0z

0w i at z=0. (6-37)
¢=¢: Ezb—zﬁ

'The boundary conditions (6-37) are the same as in the time-independent case.

Particular solution

To solve the problem of the bounded conductor let us again start with a conductor
filling all space, and with induced fields h,, and e,,. We now remove the conductor in z> 0,
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and neglect the induction effects of the reflected current; we see that the type 2 part of
(h,,e,) s changed in its passage through the boundary, because ¢ and ¢’ now satisfy
different differential equations. In contrast to the situation in the time-independent case
of § 6:3, both the type 1 and type 2 parts of (h, e) are now modified by the boundary.

The type 1 field does not give a magnetic field in z>>0 (although it does give an electric
field) and will not be discussed further. To discuss the type 2 field, which gives both electric
and magnetic fields, let us consider a component of h,, which is, in z>z,, derived from the

following function: ~
OTOWINE RO exp [i(Ex+ 1) — (€24 12 —idmov)E 2] e, (6:38)

where ¢, is a constant, and where the real part of (§2-+7%—i4mov)? is positive. In order to
construct an approximate solution (in the sense of §§ 6-2, 6:3 and 6-4) from (6-38), we have
to add a reflected function

R oPo €XP [... + (242 —idmov)iz] e ™ in z<0, (6-39)
and replace (6-38) by a transmitted function
Tyboexp[...—(E2+p2)tz]e™ in z>0. | (6:40)

From the boundary conditions (6-37) we find that

F e 23‘1‘2”) ]

The normal component of h at z = 0 is

Ry =T,— 1. (6-41)

2.h(x,y,z=0;v) = J,2.h,(x,y,z=0;v)
~%2.h, if 4mov<(£2+9?), (6-42)
~22.h, if dmov> (§2+9?);

intermediate Fourier components give 1< |7, | <2.

The physical significance of the results (6-42) is as follows. Since (£2-+72)~%is the charac-
teristic distance in which h varies along the plane z = 0 (the conductor surface) and (2mov)~*
is the skin depth, it follows from (6-42) that when the conductor in z>>0 is removed, then
Z .h,, still penetrates unchanged into the region z> 0 provided that the skin depth is much
greater than the typical distance of variation along the surface of the conductor. We shall
need this result in §9.

According to (6:42) the surface transmission for different Fourier components does not
vary greatly, so that a rough approximation to the solution for the induced magnetic field
in z>0 could be obtained by neglecting this variation and fitting an external potential field
to the normal component of h,, at z = 0.

In contrast to the time-independent case, the depth of the rotator below the conductor
surface is now important. In the time-dependent case, the induced field outside the con-
ductor clearly depends on where between the rotator and the point of observation the
boundary is placed, for, due to the skin effect in the conducting domain, h,, diminishes as
exp [ — R(2mov)}] with distance R from the rotator.
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6-6. Time-dependent case, spherical boundary

We now treat the problem of § 6-4 when the angular velocity of the rotator is variable.
The field equations are (6:26) to (6-29) in the conducting domain (r<r,) but outside the
rotator, and (6-27) to (6-30) in the insulator (r>7,). Asin § 6-5, we consider fields containing
the time in a factor e~ only.

General form of solution

The solutions of the field equations are of two basic types. (This form of solution was first
introduced by Lamb (1881) and was elaborated by Hansen (1935). Stratton (1941, chap. vir)
gives a general treatment, including plane solutions analogous to those we have used in
§§ 6-3 and 6-5. Elsasser (19464a) gives spherical solutions analogous to those we have used
here and in § 6-4; Bullard (19495) gives a detailed list of the respective field components.
A useful account, including a proof of completeness, is given by Blatt & Weisskopf (1952,
appendix B).) In the conductor we have

H, = 4n0Vyrr
E, -V [(% (r¢)] +idmovry ! (type 1 solution for o= 0); (6:43)
V2 +idmovy = 0, ¢oce

H,—v [-(% (rg) | +idmove

E, = iVgar (type 2 solution for ¢=0). (6-44)
V2¢+i4:770'V¢ — O, ¢ oc e—in
In the insulator we have
H =0
E = V[(—% (W')_ - (type 1 solution for ¢ = 0); (6+45)
-
V2¢’ — 0, ¢J oc C_M
' . .1
H; = V| 5 (%)
E, — iV§'ar, (type 2 solution for ¢ = 0). (6+46)
V2¢l — O, ¢1 o C—‘M

The magnetic field of type 1 solutions and the electric field of type 2 solution are every-
where perpendicular to r. Such fields were called toroidal, and the others poloidal, by
Elsasser and Bullard. Bullard writes H;, Hg, Eg, E, for our H, H,, E,, E,.

The functions (¢, ¢) and (¥’,4’) can be expressed as linear superpositions of functions of

the form Tk
_ 3 (k) o cosmA ’ )
(3& ¢) (kr) Hr(zlJr)%(kr) Pn (COS 0) sin md e, (6 47)
where k? = idmov, (6-48)

, n _ A .
,8) = 10 Pi(cos0) Sy <. (6-49)
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The functions containing J, ;(k7) or (r/ry)* are regular at r = 0, and the alternatives
HY),(kr) (where the imaginary part of £ is positive) or (r,/r)»*! vanish as r— .

Boundary conditions at the surface of the shell
These are Eafi = E'afi, E.fi = 0 and H = H’ on the surface 7 = r,, and are satisfied

if we put P P
F=0, () =12 ()
0w o at =7, (6-50)
¢ = ¢'a ”37 = 79'7

The boundary conditions (6:50) are the same as in the time-independent case.

Particular solution

We can now construct an approximate solution of the problem of the bounded conductor
in a way analogous to the method of § 6-5 by starting with the infinite conductor and then
removing the conductor in 7>r,. The boundary conditions are again satisfied by adding
reflected fields regular at r = 0 and transmitted fields which vanish at infinity.

In contrast with the time-independent case both the type 1 and type 2 parts of (h,,e,,)
are again modified by the boundary. ’

The type 1 solution does not give a magnetic field outside the shell. This solution will
therefore not be considered further. For the type 2 solution, which gives both electric and
magnetic fields, let us consider a component of h,, which is derived, in r>r,, from a function

Goo (k1) 2 HD (kr) P2 (cos ) eimd e~ (6:51)
where ¢, is a constant. In order to obtain an approximate solution, we must add to (6-51)
a reflected field Ry o (kr) =Y T3 (kr) Pp(cos ) eimt o= (6:52)

in r<r,, and replace (6-51) by a transmitted field
ﬂ;q}w(ro/r)"“P,',”(cos f) eimA g=ivt (6-53)
in r>r,. The boundary conditions (6-50) give

. — _ Hiy(kro) . -
2 Jaylkry)’ } (654)
Ty = (kro)~* [HEy(kro) + Ry T, 4 (Fro)].

The normal component of the induced magnetic field outside the conductor is, at the
boundary 7 = r,,

& A HY (kr ) J (/cr )
,0,0;,0). T =hy(ry,0,1;v). [1,_ n—4\""g) Jni3 o:l
h(r,,0,2;v). £ (ry,0,2;v). T IR (AWAN (S

~h,(ry,0,4;v) & if |k | <n,
~oh,(ry, 0,0;0) .8 if | kry|>n.

(6-55)

We can apply remarks analogous to those following equation (6-42) on the surface
transmission and effect of position of the boundary to the present case of the spherical shell.
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In particular, we may note that (r,/z) is the characteristic distance in which h,, varies along
the surface 7, of the conducting sphere. Therefore the physical interpretation of (6-55) is
that when the conductor in 7>r, is removed, then h,.T continues to penetrate into the
insulator unchanged provided that (r,/n) <1//(2mov), i.e. that the characteristic distance of
variation along the conductor surface is much smaller than the skin depth. We shall need
this result in § 9.

7. THE EXTERNAL FIELD DUE TO A ROTATOR NEAR A BOUNDARY OF A
CONDUCTING REGION
Introduction

In §§ 3, 4 and 5 solutions were obtained for a rotator in an infinite conducting medium
for the three cases of axial applied field, transverse applied field with low angular velocity,
and transverse applied field with high velocity. In § 6 we showed how one can use these
results for the infinite shell as a starting point of an approximate treatment of a rotator in
a finite shell. We now use this treatment to calculate the induced field due to a rigid rotator
in a rigid sphere. (This model is the approximation used in part E for the discussion of
induction in eddies in the core of the earth.) Only the time-independent case is considered.

In§§7-1, 7-2 and 7-3 solutions are given for the three simplest geometrical configurations;
all others can be derived by a linear combination of these. For transverse applied field the
solutions are given for «> 1, the simple modifications necessary for a<<1 being indicated.
For simplicity, a spherical rotator is assumed, but the results will not be greatly different
for an ellipsoidal or short finite cylindrical rotator; induction in one end of a cylindrical
rotator is also discussed for comparison with the experimental work.

The approximation involved in obtaining these results is to neglect the induction effects
associated with the magnetic field of the system of reflected currents. The errors involved in
this approximation are estimated in § 7-4 and shown to be small in nearly all cases. Charts
of the induced field on an external spherical surface concentric with the conducting shell
(induced field on the surface of the earth due to a rotating eddy in the core) are given and
discussed in §7-5. A general discussion is given in §7-6, and in §7-7 the most important
results of this section are summarized.

Co-ordinate system

See figure 22. Let a sphere of radius a, centre @, rotate at constant angular velocity w in
a stationary sphere of radius R, the centre @ of the small sphere being at a distance L from
that of the larger at O. (The limit L— 0 gives the case of concentric spheres; the limit
R,— o, (R.—L)— D gives a rotator a distance D inside a plane boundary.) Denote the
unit vector in the direction OQ by P, in the direction Pa w by @, and in the direction w a §
by 8. (The results of this section are primarily intended for application to the theory of
induction processes in the earth’s core. It will therefore be convenient to use the terms
vertical and horizontal to denote directions parallel and perpendicular respectively to the
local radius vector. Thus the unit vector P is the vertical through @, § lies in the horizontal
plane through @, and § lies in a vertical plane through @.) Take spherical polar co-ordinates
(r,0,1) with the origin at O, and the origin of A in the direction §. Let QP = 7/, the angle
OQP = 7—f, and let the angle between w and P be £&. In§§7-1, 7-2 and 7-3 we shall consider
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the following three cases of relative orientation of H, (the applied magnetic field at the
rotator, assumed constant and uniform), w (the angular velocity vector of the rotator), and
the radial vector p: H, parallel to w (case A); H, perpendicular to both w and P, i.e.
horizontal and parallel to q (case B); H, perpendicular to both @ and Ppaw, i.e. in the
vertical plane and parallel to § (case C). ~

>

A=0
Ficure 22. Co-ordinate system. Spherical rotator in spherical shell. The vectors P, 8, w lie in the

plane of the diagram. The vector § and the direction A = 0 are perpendicular to the plane of
the diagram and are directed towards the reader.

‘‘‘‘‘

7-1. Axial applied field (case A) (Hya » = 0)
From (3-22) we find, after some calculation,

h,.t=— §HaLsmgl{2cos§(rcos0 L)sinfcosA—sin§ rsin?fsin 24}, (7-1)

where h,, is the induced field due to a rotatorin a conducting medium of infinite extent. The
integration (6:25) can be carried out by elementary methods, and one finds for the potential
¥ of the external induced field (in 7> R;), after some transformation,

H,a3sin§ 1 2sin f . . 2cos f .
Y= Za-2 3 { g[m smﬂ]cos&—l—smgl:m———(ﬂ_ﬂ)—cos,b’:lsm%l}.
| (7-2)

The limiting case L— 0 gives h,,.r = 0, and hence
| h=o. (7-3)
(The induced field also vanishes when £ = 0 in the general case, i.e. when the axis of
rotation is along a radius of the surrounding shell. Both these results are consequences of the

symmetry theorem of § 6-1.)
In the limit Ry, (R,—L)— D, we have

h,.t—— H 4 2sm§ ! 5 {cos £sin?f cos A —sin £ sin? fsin 24}, (7-4)
H,a3sin§ 1 . . )
¥ Za 5 ——;,«é{-—2cos§smﬂcos/1—sm§ cosf— ﬁ— B sm2/1}. (7-5)

69 Vor. 249. A.
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Similar results can be obtained for the induced field h due to one end of a rotating
cylinder in a conducting spherical shell. We shall denote the centre of the end disk by @, and
the angle between the axis of rotation and 0@ by £, as with the sphere. We find from (3-18),

after some calculation, sin @ cos A

h, .t~ —%aHoastingT. (7-6)

The corresponding potential outside the shell is

Yo 1, Hya%sin£[1—cos (f—0)]
AL / sin ¢

cosA. (7-7)

The limiting case L->0 gives h,, .F = 0, and hence h = 0 outside the shell.
In the limit R,— «, (R,— L) - D, we have

sin fcos A

h, .f— —LlaH,a?sin §———— , (7-8)
. (1 —cosp)cosd
‘If—>~—%aHOa2sm§( r’sir/f,)b’ . (7-9)
The maximum value of h, .T on 7 = R becomes, by (7-6),
: a _ 0-2¢H,a*Lsin
(héo'r)max. = R3 g (7'10)

7-2. Transverse applied field (case B) (Hy.w = 0, Hjaq = 0; a>1)
The angular velocity w lies in a vertical plane through the centre of the rotator, H, is

horizontal and parallel to §.
We find from (5:40) and (5-41)

h, .f = —}H,a3Lsin £%{cos§ rsin263ih2/l—|—2sin §(rcosf—L)sinfcosA}
| 2sinf cos A

—%—Hods *Tw, (7‘11)

~ and from (6-25)

Y= 1H0a3sin§—}§{cos§ cdsﬂ— 1’122%)(5,3’6‘—795 sih 21
+2sin §[ sinf+ 1+fosslr(1; ﬁ)] os/l} +H,a3 3 i%gai———% (7:12)
As L->0, we have W HyesSR00sA (7-13)
i.e. the potential of a central dipole antiparallel to Hj,.
As R,—ow0, (R,—L) D, we have :
h, .‘f'—>——%Hoassin 5%.{005 £sin? fsin 24 4-sin £sin 24 cos A}, (7-14)

Y'—31Hya®sin £ ,2{cos§[cosﬁ’ Osﬂ]sm% 2sin £sinfcosA}. (7-15)
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According to (4-10) and (5-42), when ¢ << 1 the same expressiohs multiplied by 2a/15 will
describe the external induced field due to an applied field H, in the direction of w A §.

7-8. Transverse applied field (case C) (Hy.w = 0, HyaA8 = 0; a>1)
Both w and H,, lie in vertical planes through the centre of the rotator, H, is parallel to 8.
From (5-40) and (5-41) we have ‘

h, .t =}Hd sing% {%{'—;sinzﬁcosz/l—cos 0}~%H0a3 cos g?%ﬁ ,  (716)

and by (6-25)

| 2cosd 2 sinfsinAd
— —1H el ____4Cosu _1H.43 & _smysma
Y'=—1Ha sm»fr,2 {[cosﬂ ¥ cos (F—0) cos 2/l+cos,6’} 1H,a cosgr,2 i Fcos (—0)°
| (717)
As L0, we have ‘I"e——%l—]oa3r—}—2—{sin £ cos 0+ cos Esin fsin A}, (7-18)
i.e. the potential of a central dipole anti-parallel to H,,.
For R,— o0, (R,— L)~ D, we have
h, &>} Hydsinf % (3sin? feostA—1],
' (7-19)

‘I”»—%Hoa%inﬁr%{[cosﬂ— i?ibgg]cos 2/l+c05/5’}.

According to (4:10) and (5'42), when ¢ <1 the same expressions multiplied by 2¢/15
describe the induced field due to a field H; of the same magnitude but in the direction §.

7-4. Effect of the reflected current

In this subsection we discuss the induction effect of the current system reflected at the
boundary of the conducting medium. We consider the two extreme cases of a rotating sphere
in a concentric shell and near the plane boundary of a conducting half space.

Concentric spherical shell

When a spherical rotator is surrounded by a concentric spherical conducting shell, we
have the limiting cases L— 0 of §§ 7-1, 7-2 and 7-3. In the axially symmetric case A, we have
h = 0 outside the shell (7-3), in agreement with the theorem of §6-1. In the cases of H,
perpendicular to the axis of rotation, we have, (7-13) and (7-18),

h = —V[}a*H,.V(1/r)], (7-20)

where 7 is the distance from the common centre of the spheres. Equation (7-20) is identical
with the result (5-34) for an isolated sphere. It is shown rigorously by Bullard (19495) that
the field due to a rotating sphere in a concentric conducting shell is independent of the shell
in the region outside the shell. Thus in this case the approximate method used leads to the
exact result.

69-2
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Half-space, general formulae

For the case of a conducting half-space with a plane boundary, the reflected current
system will give rise to a field h,, at the rotator; this may be taken as an additional applied
field and the procedure repeated. In this way we can write for the inducing field at the

rotator
Hinducing = H0+h10+h20+ EAA] ' (7.21)

where h,,, h,, are the fields at the rotator due to reflected current systems in successive
approximations. Correspondingly, we may write for the external induced field

h=h,+h,+... (7-22)

where h, is the induced field due to Hy, h, that due to h,,, etc. We shall consider only the
averages (hyg),,, (Ny),y. ... over the rotator. According to (6-7) we need to calculate only
(W) ay. (B1) a0, --- Over the image of the rotator outside the conductor. This calculation is
simplified by the fact that V2h,, = V2h; = V?h, ... = 0 over the image, so that, by a trivial
extension of a well-known result of potential theory, we have, for a spherical rotator,

(Do) oy, = 0o (@), (My)ay. =1y (€), .., (7-23)
where Q' is the centre of the image sphere. According to (6-7) and (7-23) we have

(hyg)ay. = 1y (Q") —hy (@', Hy),

(hyo)ay. = hy(Q") —he (Q', (hyg)ay.),

(hSO)av. = hs(Q’) _hw(Ql’ (hzo)av.)a ,
etc.,

(7-24)

where h,,(Q’, H;), hoo(Q’, (hy)ay.), -.. are the induced fields at Q" due to uniform applied
fields Hy, (h,,),,., ... at the rotator for conducting surroundings of infinite extent.

Spherical rotator near plane boundary
We now calculate (h,,),,. for the three cases A, B, C of §§7-1, 7-2 and 7-3 in the high-

velocity approximation 3> 1, and then combine the results to investigate the convergence
of the series (7-21) and (7-22).
For case A we have from (3-22), (7-5) and (7-24),
(hyg)ay. = 0y (Q") —h.(Q', Hy)
= (H,a/15) sin 2¢ (a/2D)* § — (Hya/5) sin 2¢ (a/2D)* §
= — (2H,«/15) sin 2§ (¢/2D)3 §. (7-25)
This reflected field is anti-parallel to the applied field of case B.
(For the single-ended cylinder, from (3-18) and (7-9) we have similarly

(Byo)ay. = 1y (Q') —ho(Q', Hy)
= (Hy/16)sin £ (a/2D)2§ — (Hya/8) sin & (a/2D)%q
= — (H,a/16)sin £ (a/2D)?q. ‘ (7-26)
This reflected field is also anti-parallel to the inducing field of case B.)
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For case B, we have from (5-40), (5-41), (5°42) and (7-15)

(h10>av.‘ =h,(Q) —h,(Q’, Hy)
= H,sin?§ (a/2D)%q — H,y(1—3sin?¢§) (a/2D)*q
— H,cos 2 (a/2D)*§. o (127)

This field is parallel to the appliedrﬁeld H,, i.e. again case B.
For case C we have from (5-40), (5-41), (5-42) and (7-19)

(By)ar, = 0y(@) —ho(Q', Hy)
— _H,sin£(a/2D)3% + Hy(a/2D)*8
= Hjcos £ (a/2D)3 [cos E8 —sin £ B)]. (7-28)

This field contains a component parallel to the applied H; (case C), and a component
antiparallel to w (case A).

For the case B the fields (h;),,., (Ny)ay., - .- are all of the same type as Hy, so that the total
external induced field must be

h, = hwéo cos 2§ (2%)3]1 =h,, /[l —cos 2§ (5%)3]’ (7-29)

where h,; denotes the first-order external field for case B given by (7-15).
For the case A the additional inducing field h,,, and hence all h, (z>0), will be of type B
(with the sign reversed), so that the total external induced field will be

. a3
% . sin 2§ (@)
- i—g 1B a \3°
1—cos 2§ (@)

where h,, is the first-order external field for case A given by (7-5) and h,; has the meaning
given above. It is important to note that, according to (7-5), (7-15) and (7-19), h,,,
(20/15) h, and (2a/15) h, are of the same order of magnitude for a> 1.

The case Cis more complicated. The type C field due to the reflected currents will always
generate a type C and a type A field at the rotator in the next approximation. The type A
part, and all its further approximations, can be summed as in (7-30). The resulting total
external field is

hA = hlA

(7-30)

1gin of (4 3 . a\3
1 - $sin 2§ (@) : 9% sin 2& (@>

3 3 147 Y *MB 39
1—cos?{ (é%) 1—cos?{ (2%)) 15 1—cos 2§ (2%) J

where h, is the first-order field calculated by (7-19), while h, ,, h,; are defined above. In
this case the relative magnitude of the second term increases indefinitely with a.

The argument leading to (7-29), (7-30) and (7-31) shows that the series (7-22) converges
in the approximation of keeping only the average reflected field over the rotator at each
stage.

hc - th

(7-31)
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If the rotator is spinning slowly (¢ << 1), the above analysis will be somewhat different, but
the convergence will be more rapid since there will be an extra factor « associated with
cases B and C in each approximation.

Discussion

We have seen above that in the limiting case of a spherical rotator at the centre of a
spherical conductor the approximate results (7-3), (7-13) and (7-18) obtained by neglecting
the reflected currents are in fact exact. It is therefore plausible that the estimates (7-29),
(7-30) and (7-31) of the effect of the currents reflected by a plane boundary (the other
limiting case) will give the maximum error for any position of the rotator in a spherical
conductor. ‘

Since D >a and | cos 26 | <1, the estimates (7-29) and (7-30) show that the error in the
induced fields derived from (7-2) and (7-12) of cases A and B is less than about 10%,, and
falls off rapidly as the distance D from the boundary of the conductor is increased. The
error in case C will, however, depend on the value of a. The first term of (7-31) differs from
h,, by a factor differing from unity by less than 4, but the ratio of the second term to the
first term is of order of magnitude }(2¢/15) (a/2D)3, so that the result (7-19) will break down
when a<15(2D/a)® (>120) is not satisfied. For 1 <« $120 the errorin (7-19) islessthan 109,
and falls off rapidly as D is increased, but for « > 120 there is the possibility that the reflected
currents will be so large as to make (7-19) invalid. (The physical reason for this situation is
that in this case the reflected currents produce an axial field at the rotator. The induced
field given by this axial field increases without limit as « is increased, while the other induced
fields tend to a finite limit.)

Thus, apart from the one exceptional case, we may assume that all the results given in
§87-1, 7-2 and 7-8 are correct to within about 109%,.

' 7-5. Charts of induced field

It is generally believed that inside the earth there is a liquid conducting core of radius
R, = 3:5x10°km and with a conductivity c~3x 10-6e.m.u.; this core is surrounded by
a rigid mantle of outside radius Ry = 6-4x 103km and a conductivity not greater than
10-8e.m.u. (see § 8). We use the results of §§7-1, 7-2 and 7-3 to give the induced magnetic
field to be expected at the surface from an eddy in the core.

We represent the eddy by a rigid sphere of radius a rotating at constant angular velocity
w in a rigid spherical conducting shell of radius R and in a uniform applied field H;. Since
the field equations are linear, we may consider separately the effect due to various directions
of Hy and w. Figures 23 to 29 show the induced field h at the earth’s surface (r = R;) due to
a rotator whose centre is at a distance L = 0-4R,, from the centre of the earth. These charts
have been computed from (7-1), (7-2), (7-11), (7-12), (7-16) and (7-17). In this subsection
we discuss the field patterns shown on these charts, and try to give the physical reasons for
the patterns. ‘

The main features of the patterns are their very large extent (over a whole hemisphere)
and the well-defined distinct source centres composing them. The spread of the patterns
will vary somewhat with the depth of the rotator centre, but table 1 shows that this varia-
tion is not great. This table gives the angular distance of the points of maximum vertical
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Ficure 23. Case A, £ = {7 (H, parallel to w, both horizontal).
Units: vertical 0-008aH,(a/Ry)3,
horizontal 0-08aH(a/R;)3.

Ficures 23 To 29. Charts of rhagnetic fields on the surface of the earth.

Figures 23 to 29 show the magnetic fields on the surface of the earth due to a spherical eddy

rotating as a rigid body in the core of the earth, assumed to be rigid. The contours and arrows
respectively show the behaviour of the vertical and horizontal field components. (We use the
convention that the positive direction of the vertical component is upwards.) Each arrow gives
the magnitude and direction of the horizontal component at the point at the arrow foot. The
centre of the eddy is taken to be at a distance L = 0-4R, from the centre of the earth, and the
centre of each chart is directly above the eddy centre. The charts are computed from the
formulae given in §§7-1, 7-2, 7-3. When the inducing field H, is perpendicular to the eddy axis,
the high-velocity approximation &> 1 is used. The orientation of the eddy and H,, as seen by
an observer looking downwards from the earth’s surface, is indicated in each case by the sketch
above the chart. Since the field patterns all show some degree of symmetry, only the region
—3m < A < {7 is shown; the schematic diagram to the lower right of each chart indicates how the
chart is to be completed. The units in which the field is measured are given below each chart,
together with a line showing the length of unit vector of horizontal field. The angular distance
of any point on the surface of the earth from the point vertically above the eddy centre is
measured by the angle 6. In the projection used, the radial distance p of a point from the
centre of the chart is proportional to the angle 6. This projection is therefore intermediate
between an equal area projection (where pocsin 36) and a conformal projection (where
poctan 16). Correction factors have been used sothat, if the charts were made elastic and stretched
over the surface of a sphere, the arrows would take up their correct directions; the arrows are
however drawn to a constant scale on each chart.
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* Note added in proof. An error has been made in the computation of the horizontal field. However the
vectors drawn do provide a schematic representation of the field. The contours of the vertical field are correct.
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component of h from a point vertically above the rotator centre for a rotator with horizontal
axis in an axially symmetric field H; (case A, £ = }n, figure 23). The last column in table 1
gives (LRsin20/r'), .., which determines the dependence of (h.f),,. on L for case A
(§7-1). The variation with L of spread and magnitude of the induced field is similar for
cases B and C. ‘

TABLE 1

L is the distance of the rotator centre from the centre of the earth. fmax. is the angular distance of the
maxima of h.f from the centre of the pattern. (Case A, &= .

L Omax. (L~—RE s 0)
r max.
0-0R,, — 0-00R;3
0-2 62-6° 0-23
0-3 50-2° 0-42
0-4 40-6° 0-76
0-5 32:0° 1-40

The field pattern of figures 23 and 24 (H,, parallel to w) can be understood from the
current system of the short cylinder or sphere in infinite conducting surroundings (figure 16).
The current flow is over two sets of toroidal surfaces centred on the axis of rotation. In
figure 23 we see the four ends of the two (now incomplete) systems of toroids facing the
boundary, so that the external field appears to emerge from four distinct sources of alter-
nating sign spaced at 90° in A. In figure 24 (case A, £ = 45°) the whole current system has
been tilted through 45° with respect to the boundary. For £ = 0° the symmetry theorem
of § 6-1 predicts that there will be no external induced field. ,

The patterns and magnitudes of the fields shown in figures 25 to 29 (H,, perpendicular
to w) can also be interpreted in terms of a simple physical model. In an infinite conducting
medium, the electric field and current flow outside a rotator in a transverse inducing field
resemble those of a quadrupole at the centre of the rotator, the plane of the quadrupole being
perpendicular to H for > 1. (Figure 10 shows the situation for a<<1.) Thus there are four
external current circuits, and another in the rotator. It is convenient to call the two external
circuits along the axis of rotation end loops, and the other two side loops. These five loops
can be considered to possess separate dipole moments, the end two being in the same
direction as the central one, and the side two being in the opposite direction. We shall now
assume that all these moments are equal to that of an isolated rotator, and that when the
rotator is near a boundary of the conducting surround the moment of any current circuit
which would try to cross the boundary is reduced accordingly.

In figure 28 we have a plan view of the five current loops. In this case the plane of the
loops is perpendicular to the vertical at the origin, and the presence of all five loops is clearly
shown. The four loops outside the rotator are all equally modified by the boundary, and the
resultant field has the same general magnitude as the field of an isolated rotator. When the
centre of the rotator is at the centre of the core, the moments of the external loops cancel and
the field outside the core is exactly that of an isolated rotator (7-20).

In figures 25 to 27 the current loop system is in the vertical plane through the origin.
In figure 25 the core boundary prevents the formation of one side loop, with only slight
modification of the end loops, and the result is 2 net moment about twice that of an isolated

70-2
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rotator. In figure 27 it is an end loop that has been cut off. For a plane boundary the other
four would exactly cancel and there would be no external field, but with a spherical
boundary the two side loops are somewhat reduced. The result is a small net dipole moment
about one third that of an isolated rotator. Figure 26 is an intermediate case, both one end
and one side loop being partially cut off, the net moment being about equal to that of an
isolated rotator. ~ ,

The case of figure 29 is intermediate between those of figures 27 and 28. The plane of the
current loops is at 45° to the vertical at the origin, and most of the uppermost end loop is cut

~ off. The two side loops and the combined field of the central and lower end loops are clearly
visible.

The charts of figures 25 to 29 are given for the high-velocity approximation > 1. The
same charts, with the field values multiplied by 2a/15, give the induced fields for the low-
velocity approximation ¢ <<1 for applied fields perpendicular to those indicated (see §§7-2
and 7-3). For intermediate values of @ a rough picture of the surface induced field can be
obtained by using the five loop model. The magnitude and direction of the central loop
dipole moment would be taken as those produced by an isolated rotator, which are given
by (2:12) and in figure 9.

7-6. Discussion

All the results derived in §§7-1, 72 and 7-3 are approximate in that the induction effect
associated with the magnetic field of the current system reflected by the boundary was
neglected. However, it was shown in § 7-4 that the errors involved in this approximation
are small, and none of the results discussed below will be appreciably different from those
given by an exact solution.

The external induced fields derived in this section and given in the charts of § 7-5 are for
spherical rotators, but the fields are not likely to be very different for other shapes of
rotators. For all the squat rotator shapes considered in §§ 3, 4 and 5 (axial H; transverse H,,
a<<1;transverse Hy, a> 1), the induced field 4., is proportional to the volume of the rotator,
and the constants of proportionality are very little different for spheres, cylinders, or
prolate spheroids (cf. (3-21) and (3-22), (4:10) and (4-12), (5-42) and (5-43)). Moreover,
the results quoted show that the leading term in an expansion of h,, in powers of 1/r always
has the same form as for a spherical rotator. Thus it is reasonable to assume that, for all
values of « and directions of H,y, little error will be made by replacing any axially symmetric
squat rotator by a sphere of the same volume.

An interesting and somewhat unexpected feature of the results of §§ 7-1, 7-2 and 7-3, for
both spherical and plane boundaries of the conducting medium, is their lack of dependence
on the position of this boundary. This is shown by the absence of D, the depth of the rotator
beneath the boundary, in these results. Thus, at any given point outside the conductor, the
induced magnetic field is unchanged by any change in radius of a spherical boundary or
any normal displacement of a plane boundary. (This result does not hold if there is any time
variation; see §§ 65 and 6-6.)

Axial applied field
The results of § 71 bring out the important fact that for axial H; and an asymmetrical
boundary the induced field outside the conductor increases without limit as the angular
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velocity is increased. The experimental results given in § 2:6 confirm this result, and they
also confirm the absence of external induced field with a symmetrical boundary.

Transverse applied field

The expressions (7-12) and (7-17) give the potential of the external induced field for the
high-velocity approximation ¢> 1. A comparison of (4-10) and (5-42) shows that the same
expressions, multiplied by 2a/15, give the induced fields for the low-velocity approximation
a <1 for applied fields perpendicular to the ones given. For intermediate values of ¢ solutions
could be obtained by applying the method of § 6 to the solutions for infinite conducting
medium given by Bullard. (Bullard 19494, pp. 422-3; put n=m =1,a—>0.) If only
a rough picture of the surface field were required it would be much simpler, however, to use
the five-loop model as described in § 7-5.

With a rotator in a surrounding conductor, aswith an isolated rotator, the field everywhere
tends to a finite limit as the angular velocity is increased, though the magmtudes in the two
cases are somewhat different.

In the most favourable orientation the magnitude of the external induced field is increased
by a factor of two by the current outside the rotator, and in the least favourable case it is
reduced to one-third of its magnitude for an isolated rotator. Thus for the purpose of the
order of magnitude calculations of § 8 it is sufficiently accurate to use the isolated rotator
induced fields. The variation of field magnitude with velocity will also be similar to that of
an isolated rotator.

7-7. Summary of results of part D

We have calculated the induced magnetic field due to a rigid conducting sphere rotating
at constant angular velocity in a uniform applied magnetic field H;, and surrounded by,
and in perfect electrical contact with, a rigid conducting shell. The results form an extension
of those of Bullard (19495) which were for a rotating sphere either isolated or surrounded
by a concentric spherical shell. The spread of the current from the rotating sphere to the
shell, and the fact that the rotator and shell are not concentric, profoundly affect the
induced fields. In particular, there is an induced field outside the shell even when the
applied field has rotational symmetry about the axis of rotation, and this induced field
increases without limit with the angular velocity.

For an axial applied field, the single expression (7-2) gives the induced field outside the
conductor for all orientations and angular velocities of the rotator. For transverse applied
field, solutions are given only for two simple geometrical configurations, (7-12) and (7-17),
and for the limit «>1. The induced fields for all other configurations can be obtained by
a suitable linear combination of these two.

Some typical patterns are drawn in figures 23 to 29 of the induced field on a particular
spherical surface outside and concentric with the conducting spherical shell containing the
rotator. The rotator is not concentric with its shell. The dimensions are chosen to represent
the induced field at the surface of the earth due to an eddy in the core.

PART E. THE EDDY HYPOTHESIS

After the preparatory work of the last three parts, we can now discuss the eddy hypothesis
in more detail. We shall start by summarizing the essential facts which enter into the
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argument, and stating the values of the relevant physical parameters. After that, in § 8, we
show that an eddy spinning in a magnetic field of given magnitude must have a radius
exceeding a certain minimum if it is to account for the observed magnitude of a focus of the
non-dipole field (we shall need this result when we come to consider the implications of the
electromagnetic skin effect for the eddy hypothesis). The application of our results to the
eddy hypothesis is made in §9, where we summarize the paper and draw our conclusions.
Throughout the discussion we shall assume the applied magnetic field to be given, and shall
not inquire into its origin. »

The magnetic field at the earth’s surface

The geomagnetic field at the surface of the earth is of order of magnitude 0-3 to 0-6 G and
is predominantly of internal origin and of dipole form. The non-dipole component is of
order of magnitude 0-1 to 0-15G (Vestine, Laporte, Lange & Scott 1947), and is con-
centrated into about ten so-called ‘foci’ of roughly continental extent. There is a secular
variation amounting to about 1 to 1-5x 1073 G/year. It is mainly due to the variation of the
non-dipole field and shows the same sort of regional concentration. Long-period observa-
tions show that the geomagnetic field has a continuous frequency spectrum extending from
periods of less than a hundred to periods of a few thousand years (Hughes & Moore,
reported by Runcorn 1955). The magnitude of the corresponding secular variation (i.e.
dH/d¢) has a maximum at about 200 years. The discussion of the origin of the secular
variation is complicated by the fact that the whole dipole field drifts westward by on the
average about 0-2° per year (Bullard, Freedman, Gellman & Nixon 1950) with respect to
the earth’s mantle. Therefore a part of the secular variation at a given point is due to the
drift of the non-dipole field. But the major part of the secular variation would be observed
also in a frame of reference drifting at the westward drift velocity with respect to the earth’s
mantle; that this is so can be seen from the charts given by Vestine ef al. (1947), where the
individual foci of the non-dipole can be followed over the first half of this century and are
clearly seen to vary in magnitude during this period.

The magnetic field in the earth’s core

It turns out that this is the most important parameter in the discussion of the eddy
mechanism. If one extrapolates the dipole field downwards from the earth’s surface, one
gets a magnitude of about 4 G at the surface of the core. Within the core there may well be
much larger toroidal magnetic fields which do not penetrate to any great extent into the
mantle. From their dynamo theory, Bullard & Gellman (1954) estimate a maximum
toroidal field of about 400G inside the core; this field would be very small at the core
surface. The explanation of the westward drift given by Bullard ef al. (1950) leads to a
maximum toroidal field inside the core of 150G. We shall consider fields up to about
500 G.

Other parameters

The only direct estimate of the velocities of motions in the earth’s core comes from the
westward drift and implies relative velocities of 0-02 to 0-06 cms~! between the mantle and
upper part of the core (Bullard ¢t al. 1950). Bullard & Gellman (1954) estimate the maximum
equilibrium velocity in a self-exciting dynamo to be 0-01 to 0-04cms™!.
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The radius of the earth is R, = 6400 km, and that of the core is R, = 3500 km. The density
of the core material will be taken to be p = 10 g cm~3 (Bullen 1947), the viscosity 7 =10-2c.g.s.
(after Bullard 1949 a). '

We will take the electrical conductivity of the core ¢ = 3x 10-6e.m.u. after Bullard
(1949 a). The conductivity of the lower part of the mantle is probably 1079 to 1077 e.m.u.
(Runcorn 1955) ; therefore for our purposes the mantle may be treated as an insulator. We
assume a permeability and dielectric constant of unity throughout.

8. THE MINIMUM RADIUS OF AN EDDY
8:1. Magnitude of the induced field

We start by collecting a number of formulae for the magnitude of the induced field due
to induction in eddies. We approximate each eddy by a rigid conductor rotating at constant
angular velocity, and treat the rest of the core as a rigid stationary conductor. We consider
only spherical and long thin cylindrical eddies. (We saw in § 7-6 that a spherical rotator is
a good approximation for any squat rotator of the same volume.) The applied field H is
assumed to be uniform throughout the eddy. Time variation is neglected. \

Clonsider a spherical eddy spinning about a horizontal axis in the earth’s core ({ = 47 in
the notation of § 7). If H, is parallel to the axis of rotation we have (§7:1)

sin2 @ sin 21

(hr)max = %LRE(__—TE_) }I()asa
— 0-96R;%0vatH,, o (8-1)

where (£,) pax. 1S the maximum radial (vertical) component of the induced field h at the
earth’s surface, v is the peripheral velocity of the eddy, ¢ its conductivity and « is its radius.
We have taken L, the distance of the centre of the eddy from the centre of the core, to be
0-4R;. Variation of L would change the result (8-1), but (see table 1), unless the centre of
the sphere is very close to the centre of the earth, (8:1) is correct to within a factor two.
Again, even if the axis is inclined to the horizontal, (8-1) gives the right order of magnitude
unless £ ~ 0 (axis vertical), when h is very small. ‘

For one end of a cylinder of radius ¢ in a magnetic field H, parallel to the axis, we have
from (7-10)

L sin
(1, = 02552 Hoato

~ 0-5R5 2crva3H0 , (8-2)

unless  ~ 0. The estimate (8-2) would be useful if there were a long cylindrical eddy of which
one end is near the core surface, the effect of the other end being screened from an external
observer by the skin effect. \

If H, at the sphere is perpendicular to the axis of rotation, we can estimate the order of
magmtude of h at the earth’s surface by treating the sphere as an isolated rotator (§7-6). We

find, for a = 27oav>1, :
hmax.N%HOas/r ) (83)
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where 7’ is the distance from the centre of the sphere to the surface of the earth. For <1
we have Prna.~(22/15) 3 Hy 313, (8+4)

As we have seen in § 8-4, formula (8-3) can become invalid for large « because the currents
reflected from the core boundary can sometimes produce a magnetic field parallel to the
rotator axis. We can, however, ignore this possibility in a discussion of the order of magnitude

- of the induced field, because the field due to the reflected currents does not exceed +H;
therefore a bigger axial inducing field is obtained simply by alining the axis of rotation
with H,,.

A long thin cylindrical eddy with a transverse H, can also be approximated by the similar
isolated rotator. Ifa> 1 this behaves as a line of dipoles of line density 3/ a2 per unit length.
(For <1 the induced moment is smaller than this.) The induced field on the surface of the
earth above the centre of an eddy of length 2u is then

. Hydu
AT p'2(p'2 | y2)d

for a horizontal eddy. (The field for a vertical eddy is less than this.) In the core, at the most
u~1’, so this case is not appreciably different from that of a squat eddy in transverse H,, and
will not be discussed further.

A comparison of (8-1) and (8:3) shows that for a given size of squat eddy an axial H, will
lead to a greater /4,,, than would a transverse H; if %15 ('~ (3-5/6:4) R;). For given
velocity the long thin eddy in an axial H, produces greater induced fields than the squat
eddy for all feasible values of radius a.

We see from (8-3) that for a given transverse H, there is an upper limit to the induced
field that can be produced from an eddy of given radius. Conversely, to produce a given
magnitude of induced field from a given transverse H,, there is a lower limit to the eddy
radius. From (8-1) we see that for axial H, there are no similar limits; the magnitude of the
induced field increases indefinitely as the velocity is increased.

8:2. Power consumption

We now discuss the power consumption of the eddies. We show that if the available power
is limited, then a given induced field can be produced only if the eddy size exceeds a certain
minimum for axial as well as transverse H,. We determine this minimum size by comparing
the power consumption of an eddy with that of the core as a whole.

The energy losses will be due to Joule heating and viscous friction. It has been shown by
Bullard (1948) that the forces due to viscous friction in laminar flow are small compared
with the electromagnetic forces, so that the former may be neglected. However, the
Reynolds number (avp/y) of the eddy motions is likely to be large avp/n = 3 x 108 for ¢ = 5.
Therefore turbulence must be taken into account.

We now estimate the power consumption due to turbulence. We neglect the effect of the
magnetic field on the turbulence, but since electromagnetic induction tends to inhibit
turbulence our result for the turbulent power consumption will probably be an upper limit.
It has been suggested by H. B. Squire* that the effect of turbulence on a vortex in air can be

* Private communication. The use of this comparison for the estimate of the effects of turbulence was
suggested to us by Professor M. J. Lighthill, F.R.S.
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represented by a ‘turbulent kinematic viscosity’ v, of the form v, = bK, where K is the
circulation fv.ds around a closed loop moving with the eddy, and 4 is a non-dimensional

constant. (By Kelvin’s theorem, K is a constant of the motion when the Reynolds number
is large.) Professor Squire informs us that according to wind-tunnel and flight-test experi-
ments the value of 4 is probably within a factor 50f 5 x 10~*. For an eddy of radius ¢, we have
K~2may, where v is a typical macroscopic (non-turbulent) velocity. We estimate the power
loss as for viscous dissipation in laminar flow, where the power loss per unit mass is
v[(Vy,)2+(V,)2+ (Vv,)?] for an incompressible fluid (v is the kinematic viscosity; v,,0,,0,
are the Cartesian components of velocity). For an eddy, the mean turbulent power loss per
unit mass is therefore of the order of magnitude

b2mav(v/a)? ~ 3 x 107303/a. B (8-5)
(For laminar flow the power loss per unit mass would be ~ (5/p) (v/a)3. For a = 50 km,

v=10"1cm s~ this is only 3 X 1079 of that given by (8-5).)

Eddy

The power dissipation by Joule heating in an eddy can be estimated as follows. The
electromagnetic couples acting on a spherical rotator in a conducting medium of infinite
extent, and in a uniform applied magnetic field H,, are (Bullard 194954)

(Hopw =0) I = sH§a’a, (8-6)
(Hy.w =0) T =LHd« fora<kl, \ (8:7)
= 1-2H¢a%«% for a>1. (8-8)

The corresponding power consumptions ¢, and ¢;, are

(Hyrw = 0) ¢, = [0 = 0-3¢H2a%?; (8-9)
(Hy.0 =0) ¢, =1 0=068Hfa% fora<l, (8-10)
= 0-48H¢(av/o)} for a>1. (8:11)

For one end of a long cylinder in axial H; we have from (3-26)
[y, = §Hg aPa, | (8-12)
and the power consumption is
Eicyl, = l""cyi_a) ~0-79HE a%v%0. (8'13)
This is very similar to that for a squat eddy in axial H,,.

To estimate the effect of turbulence, we take the typlcal velocity to be the perlpheral
velocity v. The energy dissipation ¢, from turbulence is then

ep~b(4mad[3) p(v3/a)~2 x 10~ 23q2. (8-14)

If we put ¢ = 3 x10"%e.m.u. in (89), (8:10) and (8-11), and éompare the results with
(8-14), then we see that for our purposes (say 1000km >a>10km, v<<0-1cms~!, H,>4G)
the turbulent power loss is negligible as compared with Joule heating.

71 Vor. 249. A.
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Core

We estimate the power dissipation &, by Joule heating in the whole core by assuming the
mean magnetic field H, in the core to be entirely due to electric currents. Then we have

i — 1 2
Ky = coredVJ.E_lﬁﬂzg coredV(VAH)
1 2m 24 p3 13772 .
~ e (2RCHC) 47R3~ 3% 1013H2, (8-15)

(Bullard (19494) and Elsasser (1950) obtain similar values by different methods.)

- To estimate the turbulent power loss «, for the whole core, we assume that there is a
number of fairly large vortices (due, perhaps, to convection) with a radius of ~4R., which
lose some of their energy by turbulence. We have then from (8-5)

3
kp~imRYp 3X 103 (1”—0)
R
~ 3 x 10163, (8-16)
where 9 is a typical core velocity.
The ratio «,/« is, from (8-15) and (8-16),

Kr 10-3 8¢ .
107 (8:17)
Putting v, = 0-1 cms~!, we have «,/k,~ HE. Hence if we have H; >4 G, then «;>«, i.e. for
the whole core the energy dissipation by turbulence is much less than that by Joule heating.

In the following discussion we neglect turbulent power dissipation, and omit the subscript
J from ¢ and «.

Minimum radius

We now show that the formulae derived above imply that, if the power consumption is
limited, then the eddy radius must exceed a minimum value if 2 and H, are fixed. We set
a limit on the eddy power consumption by assuming that a single eddy does not consume
more power than the mechanism responsible for producing the main field throughout
the core.

For a squat eddy in axial H, it follows from (8-9) and (8-15) that

€ 1 (H,)?
2) ~1-34° 2~(—°) . 8-18
(5) =~ v3aonz g (37 (818)
For one end of a long cylinder in axial H, we have from (8-13) and (8-15)
€ 1 (Hy\?
= ~ 3-0a%(0v)? - (—9) : 819
(K)cyl.ll a*(ov) R HC ( )

In §81 we gave formulae for the induced field h obtainable by the various eddy
mechanisms from an axial applied field H,,. If we combine these equations with those for
power consumption given above, and assume that

(6,2) <i<l, (8-20)
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we find that the factor (¢v) can be eliminated, and we obtain the following inequalities:

£
squat rotator a=126*R, (13 ) (8-21)
c
o o (B
one end of a long cylinder a>2-0§‘3RE(F) . (8-22)
¢

For transverse H, because of the saturation at high velocities, we can obtain a limit for
a from (8-3). This gives nd
a 20-69RE F«) . (8-23)

(The power limitation only gives an upper limit to the velocity and does not affect the
inequality for a.)

It is important to note that in (8-21) and (8-22) it is the average field H,, throughout the
core which appears; in (8-23) it is the average field H, throughout the eddy.

The dependence of (8:21) and (8-22) upon £, the assumed maximum value of the ratio
between eddy power and core power, is very weak. In the following discussion we will
assume £~ 1. It is important to note that the equations (8-21), (8-22) and (8-23) for the
minimum values of eddy radii do not depend on any property of the core material, e.g. con-
ductivity or viscosity, which is subject to large error.

9. SUMMARY AND CONCLUSION

In this paper we set out to investigate the eddy hypothesis as a possible explanation of the
non-dipole part and the secular variation of the earth’s magnetic field. We have considered
a model in which a rigid conductor with a sharp boundary (the eddy) rotates steadily within
a rigid stationary conductor (the earth’s core) with which it is in electrical contact. The
eddy lies in a constant magnetic field which can, but need not be, uniform. (We have also
gone some way to look into the effects of an angular velocity varying with time, and of
diffuse rather than sharp boundaries of the rotators.) We have made an experiment with
a scale model (part B), and a theoretical investigation in which we discussed first an eddy
within a surrounding conductor of infinite extent (part C), and then within a finite con-
ductor (part D). The theoretical work led up to a set of charts (§7) giving the induced
magnetic field at the earth’s surface predicted by the model for an eddy near the surface of
the earth’s core. (These charts have already been discussed at the end of § 7.)

With an understanding of induction in an eddy in a finite shell, we can now try to see
whether the eddy hypothesis can account for the magnitude and pattern of the non-dipole
field and the secular variation. We cannot of course make any attempt to account for the
origin of time dependence manifested in the secular variation because there is no detailed
dynamical theory of the eddy motions available. All we can do here is to use the observed
time variation to impose limitations on the theory.

We saw in the preceding section that if the eddy hypothesis is to account for the magnitude
of the non-dipole field, then for a given mean value of the magnetic field in the earth’s core
(for the case of axial induction) or mean value of the applied magnetic field over the eddy
(for transverse induction), there is a minimum value for the eddy radius which decreases as
the specified magnetic field increases. Some typical lower limits on the radius are given in

71-2
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table 2 on the assumption that the eddies are to give an induced field of 0-1 G at the earth’s
surface, i.e. the magnitude of a typical non-dipole field focus. (We saw in §7-6 that a
spherical eddy is a good approximation for any squat eddy. The results quoted for one end
of a long cylinder would apply to axial induction in a long cylinder when the effect of one
end is hidden by the skin effect.) Since the radius of the earth’s core is 3500 km, the figures
in table 2 show that if the only limit on the size of an eddy is set by that of the core, then the
eddy hypothesis can account for the observed magnitude of the non-dipole field even if the
main field in the core is no bigger than 4 G, the value one gets by extrapolating the dipole
field from the earth’s surface to the surface of the core. Ifthe main field in the core is as large
as the 400 G estimated by Bullard & Gellman (1954) from the dynamo theory, then an eddy
radius of at most a few hundred kilometres would be sufficient, provided, of course, that the
velocity is large enough.

TABLE 2
H; (mean field throughout eddy radius a (km)
the core, for axial induction)  — A N
H, (mean field over spherical eddy one end of a
the eddy for transverse - A N long cylinder
induction) (G) transverse H, axial H, axial H
4 1290 1700 1100
20 760 930 380
100 440 490 130
500 260 260 44

However, if the core outside the eddy behaves like a rigid body, as we have assumed in
constructing our modification of Bullard’s eddy model, and if also there is time-dépendence,
then our results are only valid for an eddy smaller than a skin depth. The argument of § 4-4
and the remarks following equations (6-42) and (6-55) permit us to treat as steady a rotator
lying within a skin depth from the core surface. In any case the induced field from an eddy
will be attenuated by the skin effect. Therefore we shall assume that an eddy capable of
accounting for the secular variation must lie within a skin depth from the surface of the core,
the relevant period being taken from the observed behaviour of the secular variation.
Periods of 200 years certainly appear in the Fourier spectrum of the secular variation ; taking
o = 3 x107%e.m.u., we get a skin depth d = (7/4n%¢)* = 70km, and with it an upper limit
for the acceptable radius. We see from table 2 that a sphere will not do: unless the main
field in the core of the earth is to be unreasonably large, it is impossible tosqueeze into a skin
depth a spherical eddy capable of giving a sufficiently large induced field; for transverse
induction the reason is the high-velocity saturation effect, and for axial induction it is that
too much power would be required. The only mechanism that does pass the skin-depth test
for a reasonable magnitude of the main field is the single-ended cylinder in a main field
parallel to its axis. (There would have to be a finite cylinder with one end near the surface
of the core, the induced field of the other end being screened from observation by the skin
effect. This mechanism is much more efficient than a squat eddy because in the latter
the magnetic fields due to the current systems emerging from the two ends interfere
destructively.) But we see from (8-2) that if a single-ended cylinder is to provide an induced
field with a maximum value of 0-1 G at the earth’s surface, then for ¢ = 3 x 10~%e.m.u. and
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a radius @ = 44 km, we must have vH, = 300 G cms~!, where v is the peripheral velocity,
and H, the main field at the end of the cylinder, i.e. at the core surface. Thus if H; had its
dipole field value of 4G, we would need the altogether unreasonably high velocity of
80cms~!. Even with H, = 500G we need 0-7 cms™!, still unreasonably high.

It therefore appears that if the skin-depth mechanism operates, then the eddy hypothesis
must fail. This is the conclusion from Bullard’s original discussion (Bullard 1948), on the
basis of the model of the isolated eddy, and we see that our attempt to construct a more
realistic model of an eddy has met with no more success. 7

It remains to see whether there is any possible way out of the difficulty by constructing
a yet more realistic model. We have treated an eddy rotating in a rigid core of the earth.
The obvious thing to do is to take into account the motion of the core material outside the
eddy under the influence of the electromagnetic forces. Although a more detailed investiga-
tion would be required for a proper understanding, there is no reason for believing that the
skin-depth mechanism operates in a fluid conductor in the same way as it does in a rigid one.
The basis of the skin-depth mechanism in the theory of the eddy hypothesis is that currents
are induced by the variable magnetic field spreading out from an eddy starting up, and
these currents themselves have a magnetic field which cancels that spreading from the eddy.
In a fluid conductor, the electromagnetic forces will move the fluid in such a way as to
reduce the induced currents, and therefore so as to facilitate the spread of the magnetic
field. Roberts (1955) has demonstrated how effective this mechanism can be; for
example, in a uniform magnetic field H, = 4 G, with a matter density of 10 g cm~3, a period
of 200 years, and o = 3 X 10~%e.m.u., there exists a plane magneto-hydrodynamic wave
whose amplitude falls by a factor e in a distance of 4 x 107 km. There is therefore no reason
why the large radii which the eddy model requires should be ruled out by the skin effect.

The assumption of a sharp eddy boundary which we have made is also unrealistic. As we
have seen at the end of § 5, it is possible with a rotator with a diffuse boundary in an applied
magnetic field perpendicular to the axis of rotation to produce induced fields much larger
than those possible for a sharp boundary. A magneto-hydrodynamic wave would seem to
offer a means of transporting them away from the eddy.

Because the only way in which the eddy hypothesis can work involves fluid motion of the
material around an eddy, and because such motions would necessarily lead to distortion of
the induced magnetic field, we have not attempted any detailed comparison of our com-
puted charts with the observed geomagnetic non-dipole field. Nevertheless, it would be
surprising if the fluid motion destroyed such qualitative properties of the induced magnetic
field as its wide angular spread at the earth’s surface and the fact that the induced field from
a single eddy can have as many as four separate foci of vertical field. The separation of these
foci is of the same order as that observed (according to table 1 the angular spacing of the
foci can be of the order of 80°). The large spread of the patterns disposes of one apparent
difficulty in the way of the eddy hypothesis. This is that the main toroidal field within the
core is probably small near the equator, whereas foci of non-dipole field near the equator
nevertheless exist (Lowes & Runcorn 1951; Bullard & Gellmann 1954). The large angular
spread of the field due to a single eddy implies that non-dipole foci at the equator can arise
from eddies in higher latitudes, so that the presence of foci of the non-dipole field at the
equator does not require the presence of eddies at the equator.
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